DOI QR코드

DOI QR Code

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti

Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구

  • Kim, Yun-Jong (Department of Materials Engineering, The Graducate School, Paichai University) ;
  • Kim, Taik-Nam (Department of Materials Engineering, The Graducate School, Paichai University) ;
  • Lee, Sung-Ho (Department of Dental Laboratory, Daejeon Health Science College)
  • 김윤종 (배재대학교 대학원 재료공학과) ;
  • 김택남 (배재대학교 대학원 재료공학과) ;
  • 이성호 (대전보건대학 치기공과)
  • Published : 2005.07.01

Abstract

In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

Keywords

References

  1. Hiddki Aoki, Science and Medical Applications of Hydroxyapatite, JAAS, (1991)
  2. T. N. Kim, Q. L. Feng, Z. S. Luo, F. Z. Cui and J. O. Kim, Surface and Coatings Technology, 99, 20 (1998) https://doi.org/10.1016/S0257-8972(97)00121-7
  3. T. M. Tuner, D. R. Sumner, R. M. Urban, D. P. Rivero and J. O. Galante, J. Bone Joint Surg. 68A, 1396 (1986)
  4. H. A. Luckey and F. Kubli Jr. (Eds.), Titanium Alloys in Surgical Implants, American Society for Testing and Materials, Philadelphia, USA, 1983
  5. L. Keller and W. A. Dollase, J. Biomed. Mater. Res., 49 244 (2000) https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<244::AID-JBM13>3.0.CO;2-H
  6. C. M. Cotell, Appl. Surf. Sci., 69 140 (1993) https://doi.org/10.1016/0169-4332(93)90495-W
  7. M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi and T. Nakamaura, J. biomedical materials research, Part A, 64A(1), 164 (2003) https://doi.org/10.1002/jbm.a.10414
  8. M. F. Hsieh, S. H. Perng and T. S. Chin, Materials Chemistry and Physics, 74, 245 (2002) https://doi.org/10.1016/S0254-0584(01)00474-6
  9. L. D. Piveteau, B. Gasser and L. Xchlapbach, Biomaterials 21, 2193 (2000) https://doi.org/10.1016/S0142-9612(00)00160-5
  10. S. P. Szu, L. C. Klein and M. Creenblatt, J Non-Cryst Solids, 143, 21 (1992) https://doi.org/10.1016/S0022-3093(05)80548-4
  11. H. M. Kim, H. Takadama, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura Korean J. Ceram., 44, 336 (1998)
  12. J. P. Zitelli and P. Higham, Mat. Res. Soc. Symp. Proc., 599, 117 (2000)
  13. A. Montenero, G. Gnappi, F. Ferrari and M. Cesari, J. Mater. Sci., 35, 2791 (2000) https://doi.org/10.1023/A:1004738900778
  14. Y. Fujishiro, N. Sato, S. Uchida and T. Sato, J. Mater. Sci.: Mater. Med., 9, 363 (1998) https://doi.org/10.1023/A:1013201627622