Substrate Variety of a Non-metal Dependent Tagatose-6-phosphate Isomerase from Staphylococcus aureus

Staphylococcus aureus 유래 비금속성 이성화효소인 Tagatose-6-phosphate Isomerase의 기질다양성

  • Oh Deok-Kun (Department of Bioscience and Biotechnology, Sejong University) ;
  • Ji Eun-Soo (Major in Biotechnology, The Catholic University of Korea) ;
  • Kwon Young-Deok (Major in Biotechnology, The Catholic University of Korea) ;
  • Kim Hye-Jung (Department of Bioscience and Biotechnology, Sejong University) ;
  • Kim Pil (Major in Biotechnology, The Catholic University of Korea)
  • 오덕근 (세종대학교 생명공학과) ;
  • 지은수 (가톨릭대학교 생명공학전공) ;
  • 권영덕 (가톨릭대학교 생명공학전공) ;
  • 김혜정 (세종대학교 생명공학과) ;
  • 김필 (가톨릭대학교 생명공학전공)
  • Published : 2005.06.01

Abstract

To investigate the substrate variety of a putative non-metal dependent isomerase, the tagatose-6-phosphate isomerase (E.C. 5.3.1.26) structural genes (lacB; 510bp and lacA; 430bp) of Staphylococcus aureus were subcloned and co-expressed. Based on the substrate configuration, various aldoses were surveyed for substrate of ketose isomerization. Among the 10 aldoses tested, D-ribose and D-allose were isomerized by the enzyme. The subunit A and B showed more than $95\%$ activity for D-ribose and $75\%$ for D-allose in the presence of 1mM EDTA compared with non-EDTA conditions, which implying tagatose-6-phosphate isomerase is a non-metal dependent isomerase. Each of subunit A or subunit B alone showed no activity for any of the substrates tested. The affinity constant ($K_m$) of tagatose-6-phosphate isomerase against D-ribose and D-allose were 26 mM and 142 mM, respectively.

비금속성 이성화효소로 추정되는 Staphylococcus aureus의 tagatose-6-phosphate isomerase(E.C. 5.3.1.26)의 기질다 양성을 조사하기 위해서 그 구조유전자(lacB;510bp와 lacA;430bp)를 대장균에서 동시발현하였다. 알려진 기질 이외에 D-ribose와 D-allose에 대해 이성화활성이 새롭게 관찰되었다. EDTA 1 mM 존재하에서도 D-ribose와 D-allose에 대하여 각각 EDTA 비존재 조건에 대비하여 $95\%,\;75\%$의 이성화활성을 나타내는 것으로 미루어 tagatose-6-phosphate isomerase가 비금속성 이성화효소임을 밝혔다. 이때 lacA 또는 lacB의 단독발현시에는 이성화활성이 전혀 밝견되지 않았다. D-Ribose와 D-allose에 대한 기질친화상수 ($K_m$)은 각각 26 mM와 142 mM였다.

Keywords

References

  1. Asboth, B. and G Naray-Szabo. 2000. Mechanism of action of D-xylose isomerase. Curr. Protein Pept. Sci. 1: 237-254 https://doi.org/10.2174/1389203003381333
  2. Bhosale, S. H., M. R. Rao, and V. V. Deshpande. 1996. Molecular and industrial aspects of glucose isomerase. Microbial. Rev. 60: 280-300
  3. Blow, D. M., C. A. Collyer, J. D. Goldberg, and O. S. Smart. 1992. Structure and mechanism of D-xylose isomerase. Faraday Discuss. 92: 67-73
  4. Cheetham, P. S. J. and A. N. Wootton. 1993. Bioconversion of D-galactose into D-tagatose. Enzyme Microb. Technol 15: 105-108 https://doi.org/10.1016/0141-0229(93)90032-W
  5. Dische, Z. and E. Borenfreund. 1951. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J. Biol. Chem. 192: 583-587
  6. Garcia-Viloca, M., C. Alhambra, D. G Truhlar, and J. Gao. 2003. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects. J. Comput. Chem. 24: 177-190 https://doi.org/10.1002/jcc.10154
  7. Graham Solomons, J. T., E. M. Zimmerly, S. Bums, N. Krishnamurthy, M. K. Swan, S. Krings, H. Muirhead, J. Chirgwin, and C. Davies. 2004. The crystal structure of mouse phosphoglucose isomerase at 1.6A resolution and its complex with glucose 6-phosphate reveals the catalytic mechanism of sugar ring opening. J. Mol. Biol. 342: 847-860 https://doi.org/10.1016/j.jmb.2004.07.085
  8. Hamilton, I. R. and H. Lebtag. 1979. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J. Bacteriol. 140: 1102-1104
  9. Jagusztyn-Krynicka, E. K., J. B. Hansen, V. L. Crow, T. D. Thomas, A. L. Honeyman, and R. 3rd. Curtiss. 1992. Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster. J. Bacteriol. 174: 6152-6158
  10. Kim, J. W., Y. W. Kim, H. J. Roh, H. Y. Kim, J. H. Cha, K. H. Park, and C. S. Park. 2003. Production of tagatose by a recombinant thermostable L-arabinose isomerase hom Thermus sp. IM6501. Biotechnol. Lett. 25: 963-967 https://doi.org/10.1023/A:1024069813839
  11. Kim, P. 2004. Current studies on biological tagatose production using L-arabinose isomerase: a review and future perspective. Appl. Microbiol. Biotechnol. 65: 243-249
  12. Lee, D. W., E. A. Choe, S. B. Kim, S. H. Eom, Y. H. Hong, S. J. Lee, H. S. Lee, D. Y. Lee, and Y. R. Pyun. 2005. Distinct metal dependence for catalytic and structural functions in the I-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Arch Biochem. Biophys. 434: 333-343 https://doi.org/10.1016/j.abb.2004.11.004
  13. Patrick, J. W. and N. Lee. 1968. Purification and properties of an L-arabinose isomerase from Escherichia coli. J Biol. Chem. 243: 4312-4318
  14. Read, J., J. Pearce, X. Li, H. Muirhead, J. Chirgwin, and C. Davies. 2001. The crystal structure of human phosphoglucose isomerase at 1.6 A resolution: implications for catalytic mechanism, cytokine activity and haemolytic anaemia J. Mol. Biol. 309: 447-463 https://doi.org/10.1006/jmbi.2001.4680
  15. Roh, H. J., P. Kim, Y. C. Park, and J. H. Choi. 2000. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase. Biotechnol. Appl. Biochem. 31 (Pt 1): 1-4 https://doi.org/10.1042/BA19990065
  16. Rosey, E. L., B. Oskouian, and G. C. Stewart. 1991. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 173: 5992-5998
  17. Swan, M. K., J. T. Solomons, C. C. Beeson, T. Hansen, P. Schonheit, and C. Davies. 2003. Structural evidence for a hydride transfer mechanism of catalysis in phosphoglucose isomerase from Pyrococcus furiosus. J. Biol. Chem. 278: 47261-47268 https://doi.org/10.1074/jbc.M308603200
  18. Topper, Y. J. 1957. On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. Biol. Chem. 225: 419-425
  19. van Rooijen, R. J., S. van Schalkwijk, and W. M. de Vos. 1991. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176-7181
  20. Yoon, S. H., P. Kim, and D. K. Oh, 2003. Properties of Larabinose isomerase from Escherichia coli as biocatalysis for tagatose production. World J. Microbiol. Biotechnol. 19: 47-51 https://doi.org/10.1023/A:1022575601492