Wave Generation and Its Effect on Lesion Detection in Sonoelastography: Theory and Simulation Study

음향 탄성영상법에서 연조직 내 파동 발생과 병변 검출의 특성: 이론 및 시뮬레이션 연구

  • Published : 2005.07.01

Abstract

Sonoelastography is an ultrasound-based technique that visualizes the elastic properties of soft tissues by measuring the tissue motion generated by an externally applied vibration. In this paper. the characteristics of wave generation in soft tissues due to an acoustic vibrator are studied. The effects of modal patterns on the detectability of lesions such as tumors in senoelastography are also investigated These are accomplished by analyzing the vibration patterns calculated using theoretical equations and finite element methods in halt space, infinite plate. and finite-sized tissue. A finite-width source generates shear waves with large amplitude Propagating in specific directions. and the generation characteristics depend both on the width and frequency of the vibrator. as well as the distance from it. It is shown in a finite-sized tissue that the lesion detection in displacement images is quit dependent on the modal patterns inside tissue. In contrast it Is also found that the lesion detectability in strain images is less dependent on the modal Patterns and is much better than that in displacement images.

음향 탄성영상법은 외부 진동을 조직에 인가하고 조직 운동을 측정함으로써 조직의 탄성을 영상화하는 초음파영상기법이다. 본 논문에서는 음향 탄성영상법에서 표면 진동자에 의해 연조직 내에 파동이 발생되는 특성과 모드패턴이암과 같은 병변 검출에 미치는 영향을 조사였다. 이를 위해 반공간, 두께가 일정한 무한평판, 그리고 유한 크기 조직에서 발생된 진동패턴을 이론과 유한요소법으로 계산하고 분석하였다. 유한 너비 진동원에 의해 조직에는 특정한 방향으로 강하게 전달되는 횡파가 발생하였으며, 그 특성은 진동자 너비, 주파수 및 진동자로부터의 거리에 의존하였다. 유한 크기 조직에서 병변의 검출가능성은 변위영상에서는 조직내 모드패턴에 큰 영향을 받았으며, 이에 비해 변형률영상에서는 모드패턴에 덜 민감하고 검출가능성도 아주 높은 것으로 나타났다.

Keywords

References

  1. T. Sato, Y. Yamakoshi, and T. Nakamura, 'Nonlinear tissue imaging,' Proc. IEEE Ultrasonics Symp., 889-900, 1986
  2. D. Yanwa, T. Jia, and S. Yongchen, 'Relations between the acoustic nonlinearity parameter and sound speed and tissue composition,' Proc. IEEE Ultrasonics Symp., 931-934, 1987
  3. P. He and A. McGoron, 'Parameter estimation for nonlinear frequency dependent attenuation in soft tissue,' Ultrasound in Med & Biol, 15 (8), 757-763, 1989 https://doi.org/10.1016/0301-5629(89)90116-6
  4. Y. Hayakawa, T. Wagar, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, 'Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 33 (6), 759-763, 1986 https://doi.org/10.1109/T-UFFC.1986.26893
  5. J. Ophir, E.I. Cespedes, B. Garra, H. Ponnekanti, Y. Huang, and N. Maklad, 'Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo,' Eur. J. Ultrasound, 3, 49-70, 1996 https://doi.org/10.1016/0929-8266(95)00134-4
  6. L. Gao, K.J. Parker, R.M. Lerner, and S.F. Levinson, 'Imaging of the elastic properties of tissues-A review,' Ultrasound in Med. & Biol., 22 (8), 959-977, 1996 https://doi.org/10.1016/S0301-5629(96)00120-2
  7. M. Fatemi and J.F. Greenleaf, 'Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound,' Phys. Med. Biol., 45, 1449-1464, 2000 https://doi.org/10.1088/0031-9155/45/6/304
  8. M. O'Donnell, A.R. Skovoroda, B.M. Shapo, and S.Y. Emelianov, 'Internal displacement and strain imaging using ultrasonic speckle tracking,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 41 (3), 314-325, 1994 https://doi.org/10.1109/58.285465
  9. P. Chaturvedi, M.F. Insana, and T.J. Hall, 'Ultrasonic and elasticity imaging to model disease-induced changes in soft-tissue structure,' Medical Image Analysis, 2 (4), 325-338, 1998 https://doi.org/10.1016/S1361-8415(98)80014-5
  10. R. Souchon, L. Soualmi, M. Bertrand, J.Y. Chapelon, F. Kallel, and J. Ophir, 'Ultrasonic elastography using sector scan imaging and a radial compression,' Ultrasonics, 40, 867-871, 2002 https://doi.org/10.1016/S0041-624X(02)00228-7
  11. S. Catheline, F. Wu, and M. Fink, 'A solution to diffraction biases in sonoelasticity: The acoustic impulse technique,' J. Acoust. Soc. Amer., 105 (5), 2941-2950, 1999 https://doi.org/10.1121/1.426907
  12. L. Sandrin, M. Tanter, S. Catheline, and M. Fink, 'Shear modulus imaging using 2-D transient elastography,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 49 (4), 426-435, 2002 https://doi.org/10.1109/58.996560
  13. Y. Yamakoshi, J. Sato, and T. Sato, 'Ultrasonic imaging of internal vibration of soft tissue under forced vibration,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 37 (2), 45-53, 1990 https://doi.org/10.1109/58.46969
  14. S.F. Levinson, M. Shinagawa, and T. Sato, 'Sonoelastic determination of human skeletal muscle elasticity,' J. Biomechanics, 28 (10), 1145-1154, 1995 https://doi.org/10.1016/0021-9290(94)00173-2
  15. K.J. Parker, S.R. Huang, R.A. Musulin, and R.M. Lerner, 'Tissue response to mechanical vibrations for sonoelasticity imaging,' Ultrasound in Med. Biol., 16 (3), 241-246, 1990 https://doi.org/10.1016/0301-5629(90)90003-U
  16. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J.L. Gennisson, and M. Meunier, 'In vivo breast tumor detection using transient elastography,' Ultrasound in Med. Biol., 29 (10), 1387-1396, 2003 https://doi.org/10.1016/S0301-5629(03)00978-5
  17. L. Gao, K.J. Parker, and S.K. Alam, 'Sonoelasticity imaging: Theory and experimental verification,' J. Acoust. Soc. Am., 97 (6), 3875-3886, 1995 https://doi.org/10.1121/1.412399
  18. S. Catheline, J.L. Thomas, F. Wu, and M.A Fink, 'Diffraction field of a low frequency vibrator in soft tissues using transient elastography,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 46 (4), 1013-1019, 1999 https://doi.org/10.1109/58.775668
  19. J.D. Achenbach, Wave Propagation in Elastic Solids, (North-Holland, Amsterdam, 1975.)
  20. K.F. Graff, Wave Motion in Elastic Solids, (Ohio State University Press, 1975.)
  21. R.D. Cook, D.S. Malkus, and M.E. Plesha, Concepts and Application of Finite Element Analysis, (John Wiley & Sons, New York, 1989.)
  22. T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, and T.J. Hall, 'The elastic moduli of breast and prostate tissues under compression,' Ultrason. Imaging, 20 (4), 260-274, 1998 https://doi.org/10.1177/016173469802000403
  23. K. Nightingale, S. McAleavey, and G. Trahey, 'Shearwave generation using acoustic radiation force: In vivo and ex vivo results,' Ultrasound in Med. & Biol., 29 (12), 1715-1723, 2003 https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
  24. B. Angelsen, Ultrasound Imaging: Waves, Signals, and Signal Processing, Emantec, Trondheim, (Norway, 2000.)
  25. L. Sandrin, B. Fourquet, J.M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, and M. Ziol, 'Transient elastography: A new noninvasive method for assessment of hepatic fibrosis,' Ultrasound in Med. & Biol., 29 (12), 1705-1713, 2003 https://doi.org/10.1016/j.ultrasmedbio.2003.07.001
  26. A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, and S.Y. Emelianov, 'Shear wave imaging: A new ultrasonic technology of medical diagnostics,' Ultrasound in Med. & Biol., 24 (9), 1419-1435, 1998 https://doi.org/10.1016/S0301-5629(98)00110-0
  27. K. Nightingale, S. McAleavey, and G. Trahey, 'Shearwave generation using acoustic radiation force: In vivo and ex vivo results,' Ultrasound in Med. & Biol., 29 (12), 1715-1723, 2003 https://doi.org/10.1016/j.ultrasmedbio.2003.08.008
  28. J. Bercoff, M. Tanter, M. Muller, and M. Fink, 'The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 51 (11), 1523-1536, 2004 https://doi.org/10.1109/TUFFC.2004.1367494
  29. K.J. Parker, D. Fu, S.M. Graceswki, F. Yeung, and S.F. Levinson, 'Vibration sonoelasticity and the detectability of lesions,' Ultrasound in Med. Biol. 24 (9), 1437-1447, 1998 https://doi.org/10.1016/S0301-5629(98)00123-9
  30. C.S. Chu and M.C. Lee, 'Finite element analysis of cerebral contusion,' Advances in Bioengineering, ASME-BED-Vol. 20, 601-604, 1991
  31. M. Hauth, J. Gross, W. Strasser, and G.F. Buess, 'Soft tissue simulation based on measured data,' Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention, Montreal, Canada, 262-270, 2003
  32. C.R. Hou, 'Design and development of a pulsed wave Doppler ultrasonic system for measuring the viscoelasicity of soft tissue,' Ph.D. dissertation, National Cheng Kung University, Taiwan, 2002
  33. L.S. Taylor, D.J. Rubens, and K.J. Parker, 'Artifacts and artifact reduction in sonoelastography,' Proc. IEEE Ultrasonics Symp., 1849-1852, 2000
  34. F. Kallel and M, Bertrand, 'Tissue elasticity reconstruction using linear perturbation method,' IEEE Trans. Med. Imag., 15 (3), 299-313, 1996 https://doi.org/10.1109/42.500139
  35. L. Sandrin, M, Tanter, D. Cassereau, S. Catheline, and M. Fink, 'Low-frequency shear wave beam forming in time-resolved 2D pulsed elastography,' Proc. IEEE Ultrasonics Symp., 1803-1808, 2000
  36. L.S. Taylor, M.S. Richards, A.J. Moskowitz, A.L. Lerner, D.J. Rubens, and K.J. Parker, 'Viscoelastic effects in sonoelastography: Impact on tumor detectability,' Proc. IEEE Ultrasonics Symp., 1639-1642, 2001
  37. M.K. Jeong and S.J. Kwon, 'Tissue stiffness imaging method using temporal variation of ultrasound speckle pattern,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 50 (4), 457-460, 2003 https://doi.org/10.1109/TUFFC.2003.1197969