DOI QR코드

DOI QR Code

First-principles Study on Magnetism and Electronic Structure of Fe Chain on Ag(001)

Ag(001) 표면 위에 놓인 Fe 선의 자성과 전자구조

  • Jin, Y.J. (Department of Physics, Inha University) ;
  • Lee, J.I. (Department of Physics, Inha University)
  • Published : 2005.08.01

Abstract

The electronic structure and magnetism of Fe chain along the [110] direction on Ag(001) were investigated by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within generalized gradient approximation (GGA). The magnetic moment of Fe atom in Fe chain is calculated to be $3.02\;{\mu}_B$, which is slightly larger than that ($2.99\;{\mu}_B$) of the Fe[110] chain on Cu(001). The reduced coordination number for the Fe chain induced the Fe-d band narrowing and exchange-splitting enhancement, which are responsible for the large magnetic moment of the Fe chain. The calculated band width of the Fe-d band and the exchange-splitting are 1.7 eV and 3.2 eV, respectively.

제일원리적 에너지 띠 계산 방법인 전 전자 총 퍼텐셜 선형보강평면파동(all-electron full-potential linearized augmented plane ave) 방법에 일반기울기근사(generalized gradient approximation)를 채용하여 Ag(001) 표면 위에 [110] 방향으로 놓인 Fe 선의 전자구조와 자성을 이론적으로 연구하였다. Fe 선의 원자당 자기모멘트는 $3.02\;{\mu}_B$로 Cu(001) 위에 놓인 Fe[110] 선의 값($2.99\;{\mu}_B$) 보다 약간 컸다. Fe 선의 자기모멘트가 상당히 증가한 것은 이웃한 결합수가 줄어들고 그 결과로 Fe-d 전자상태의 띠폭이 줄어들어 국소화 되고 스핀분리가 증가하였기 때문이다. Fe-d 전자상태의 띠 폭은 약 1.6eV였으며 스핀분리는 약 3.2 eV였다.

Keywords

References

  1. L. Samuelson, Materials Today, 6, 22(2003)
  2. H. Morkoc and Y. Taur, J. Korean Phys. Soc., 42, S555(2003)
  3. A. Fert and L. Piraux, J. Magn. Magn. Mater., 200, 338(1999) https://doi.org/10.1016/S0304-8853(99)00375-3
  4. S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, and Y. W. Du, J. Magn. Magn. Mater., 222, 97(2000) https://doi.org/10.1016/S0304-8853(00)00541-2
  5. P. Gambardella, M. Blanc, L. Burgi, K. Kuhnke, and K. Kern, Surf. Sci., 449, 93(2000) https://doi.org/10.1016/S0039-6028(99)01218-2
  6. J. Hauschild, H. J. Elmer, and U. Gradmann, Phys. Rev. B, 57, R677( 1998) https://doi.org/10.1103/PhysRevB.57.R677
  7. J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. S. Manoharan, and J. Kirschner, Phys. Rev. B, 56, 2340(1997) https://doi.org/10.1103/PhysRevB.56.2340
  8. M. Weinert and A. J. Freeman, J. Magn. Magn. Mater., 38, 23(1983) https://doi.org/10.1016/0304-8853(83)90098-7
  9. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864(1981) https://doi.org/10.1103/PhysRevB.24.864
  10. M. Weinert, E. Wimmer, and A. J. Freeman, J. Magn. Magn. Mater., 26, 4571(1982)
  11. T. J. Yang, Y. J. Zhao, and A. J. Freeman, J. Magn. Magn. Mater., 272, 1648(2004) https://doi.org/10.1016/j.jmmm.2003.12.230
  12. D. Spisak and J. Hafuer, Phys, Rev. B, 65, 235405(2002) https://doi.org/10.1103/PhysRevB.65.235405
  13. Y. J. Jin, I. G. Kim, and J. I. Lee, J. Korean Phys. Soc., 43, 1071(2003)
  14. Y. J. Jin, I. G. Kim, and J. I. Lee, Phys. Stat. Sol. (b), 241, 1431(2004) https://doi.org/10.1002/pssb.200304570
  15. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864(1964) https://doi.org/10.1103/PhysRev.136.B864
  16. W. Kohn and L.J. Sham, Phys. Rev., 140, A1133(1965) https://doi.org/10.1103/PhysRev.140.A1133
  17. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244(1992) https://doi.org/10.1103/PhysRevB.45.13244
  18. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107(1977) https://doi.org/10.1088/0022-3719/10/16/019