Importance of the Degree of Antigen Polymerization by Detoxification in Modulating the Immunogenicity of Acellular Pertussis Vaccine

  • Bae Cheon-Soon (Vaccine Institute, GreenCross Vaccine Corp.,) ;
  • Hong Sung-Sang (Vaccine Institute, GreenCross Vaccine Corp.,) ;
  • Ahn Sang-Jeom (Vaccine Institute, GreenCross Vaccine Corp.,) ;
  • Jang Yang-Suk (Vaccine Institute, GreenCross Vaccine Corp.,) ;
  • Hur Byung-Ki (Department of Biotechnology and Bioengineering, Inha University)
  • Published : 2005.06.01


For the acellular pertussis vaccine with a high immunogenicity, the concentration, composition and characteristics of acellular pertussis antigens are the crucial points to be considered. Nevertheless, it has not been proved yet whether or not the polymerization degree, one of the characteristics of formalin-detoxified acellular pertussis antigens, has an influence on vaccine potency. Thus, in the present study, the correlations among detoxification conditions of acellular pertussis bulks, their polymerization degrees and their immunogenicities were examined. In addition, the relative importance of pertussis toxoid in vaccine immunogenicity was also investigated. Results show that a lower lysine concentration during detoxification induces highly-polymerized antigens, the immunogenicity has a great dependency on the polymerization degree of antigens, and also pertussis toxoid has a relatively stronger influence on the immunogenicity than other antigens. Accordingly, in the aspect of the potency of detoxified acellular pertussis vaccine, it can be demonstrated that the polymerization of antigens and its degree are the major factors affecting the immunogenicity along with a relatively high content of pertussis toxoid



  1. Global programme on vaccines (1996) State of the World's Vaccines and Immunization. World Health Organization, Geneva
  2. Edwards, K. M., M. D. Decker, and E. A. Mortimer Jr. (1999) Pertussis vaccine. pp. 293-344. In: S. A. Plotkin and W. A. Orenstein (eds.). Vaccines. W. B. Saunders company, Philadelphia, USA
  3. Yasuo, M. and T. Atsuko (1996) Pertussis vaccine. pp. 39- 51. In: O. Akira (ed.). Vaccine Handbook. Maruzen Publisher, Tokyo, Japan
  4. Cherry, J. D., J. Gornbein, U. Heininger, and K. Stehr (1998) A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine 16: 1901-1906
  5. Hewlett, E. L. and S. A. Halperin (1998) Serological correlates of immunity to Bordetella pertussis. Vaccine 16: 1899-1900
  6. Storsaeter, J., H. O. Hallander, L. Gustafsson, and P. Olin (1998) Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 16: 1907-1916
  7. Huet, M. E., E. Relyveld, and S. Camps (1992) Simplified activity evaluation of several tetanus vaccines. Biologicals 20: 35-43
  8. Relyveld, E. H., B. Bizzini, and R. K. Gupta (1998) Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 16: 1016-1023
  9. Seiji, S. O., O. S. Tamotsu, K. Satoru, and M. Tyoku (1984) Effect of pH and lysine during detoxification of a hemorrhagic principle of HABU snake venom (Trimeresurus, Flavoviridis) with formalin on the immunogenicity of the toxoid. Japan J. Med. Sci. Biol. 37: 225-231
  10. Guan, Y. X., H. X. Pan, Y. G. Gao, S. J. Yao, and M. G. Cho (2005) Refolding and purification of recombinant human interferon-$\gamma$ expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127
  11. Lim, I. H., K. J. Lee, E. K. Lee, M. R. Choi, G. W. Lee, Y. Yoon, D. H. Park, and K. H. Jung (2004) High-yield purification and chracterization of recombinant human leukotactin- 1 in Pichia pastoris. Biotechnol. Bioprocess Eng. 9: 1-6
  12. Bae, C. S., G. Y. Lim, J. S. Kim, and B. K. Hur (2003) Quadrivalent combined vaccine, including diphtheria toxoid, tetanus toxoid, detoxified whole cell pertussis, and hepatitis B surface antigen. J. Microbiol. Biotechnol. 13: 338-343
  13. Bae, C. S., K. N. Park, S. J. Ahn, J. S. Kim, and B. K. Hur (2002) Novel formulation of quadrivalent combined vaccine including diphtheria toxoid, tetanus toxoid, acellular pertussis antigens and hepatitis B surface antigen. J. Microbiol. Biotechnol. 12: 787-792
  14. Linggood, F. V., F. S. Muriel, A. J. Fulthorpe, A. J. Woiwod, and C. G. Pope (1962) The toxoiding of purified diphtheria toxin. Brit. J. exp. Path.14: 177-188
  15. Scheibel, I. and C. P. Elo (1965) Irreversible detoxification of purified diphtheria toxin. Acta Pathol. Micrbiol. Scand. 65: 117-128
  16. Gupta, R. K., E. H. Relyveld, E. B. Lindbald, B. Bizzini, S. Benefraim, and C. K. Gupta (1993) Adjuvants: A balance between toxicity and adjuvanticity. Vaccine 11: 293-306
  17. Goldsby, R. A., T. J. Kindt, and B. A. Osborne (2000) Kuby Immunology. 4th ed., W. H. Freeman and Company, NY, USA
  18. Cooper, P. D. (1994) The selective induction of different immune responses by vaccine adjuvants. pp. 125-158. In: G. L. Ada (ed.). Strategies in Vaccine Design. Landes Company, Austin, USA
  19. Gupta, R. K. and B. E. Rost (2000) Aluminum compounds as vaccine adjuvants. pp. 73-74. In: D. T. O'Hagan (ed.). Vaccine Adjuvants: Preparation Methods and Research Protocols. Humana Press, New Jersey, USA
  20. Gupta, R. K. and G. R. Siber (1995) Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 13: 1263-1276
  21. Jenson, O. M. and C. Koch (1988) On the effect of Al(OH)3 as an immunological adjuvant. Acta Pathol. Microbiol. Immun. Scand. 96: 257-264
  22. Shirodkar, S., R. L. Hutchinson, D. L. Perry, J. L. White, and S. L. Hem (1990) Aluminum compounds used as adjuvants in vaccines. Pharm. Res. 7: 1282-1288