DOI QR코드

DOI QR Code

SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동

High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications

  • 이재춘 (명지대학교 신소재공학과) ;
  • 권혁천 (명지대학교 신소재공학과) ;
  • 권영필 (명지대학교 신소재공학과) ;
  • 박성 (명지대학교 신소재공학과) ;
  • 장진식 (㈜벽산) ;
  • 이종호 (한국과학기술연구원 나노재료연구센터) ;
  • 김주선 (한국과학기술연구원 나노재료연구센터) ;
  • 이해원 (한국과학기술연구원 나노재료연구센터)
  • Lee, Jae-Chun (Department of Materials Science and Engineering, Myongji University) ;
  • Kwon, Hyuk-Chon (Department of Materials Science and Engineering, Myongji University) ;
  • Kwon, Young-Pil (Department of Materials Science and Engineering, Myongji University) ;
  • Park, Sung (Department of Materials Science and Engineering, Myongji University) ;
  • Jang, Jin-Sik (Byucksan Corp) ;
  • Lee, Jongho (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Joosun (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Won (Nano-Materials Research Center, Korea Institute of Science and Technology)
  • 발행 : 2005.12.01

초록

Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

키워드

참고문헌

  1. S. P. S. Badwal and K. Foger, 'Solid Oxide Electrolyte Fuel Cell Review,' Ceram. Int., 22 257-65 (1996) https://doi.org/10.1016/0272-8842(95)00101-8
  2. O. Yamamoto, 'Solid Oxide Fuel Cells: Fundamental Aspects and Prospects,' Electrochimca Acta, 45 2423-35 (2000) https://doi.org/10.1016/S0013-4686(00)00330-3
  3. P. H. Larsen, F. W. Poulsen, and R. W. Berg, 'The Influence of $SiO_2$ Addition to $2MgO-Al_2O_3-3.3P_2O_5$,' J. Non-Cryst. Solids, 244 16-24 (1999) https://doi.org/10.1016/S0022-3093(98)00848-5
  4. K. L. Ley, M. Krumpelt, R. Kumar, J. H. Meiser, and I. Bloom, 'Glass-Ceramic Sealants for Solid Oxide Fuel Cells : Part I. Physical Properties,' J. Mater. Res., 11 [6] 1489-93 (1996) https://doi.org/10.1557/JMR.1996.0185
  5. C. Gunther, G Hofer, and W. Kleinlein, 'The Stability of the Sealing Glass AF45 in $H_2/H_2O\;and\;O_2,\;N_2$ Atmospheres,' Electrochemical Proc., 97-18 746-56 (1997)
  6. K. Eichler, G Solow, P. Otschik, and W. Schaffrath, 'BAS $(BaOAl_2O_3SiO_2)$-Glasses for High Temperature Applications,' J. Eur. Ceram. Soc., 19 1101-04 (1999) https://doi.org/10.1016/S0955-2219(98)00382-3
  7. P. H. Larsen and P. F. James, 'Chemical Stability of MgO/ CaO/$Cr_2O_3-Al_2O_3-B_2O_3$-Phosphate Glasses in Solid Oxide Fuel Cell Environment,' J. Mater. Sci., 33 2499-507 (1998) https://doi.org/10.1023/A:1004332614379
  8. K. H. Lee, 'A Study on Glasses and Glass-Ceramics as Sealing Materials for Flat-Plate Solid Oxide Fuel Cell Components(in Korean),' J. Kor. Ceram. Soc., 35 [2] 151-62 (1998)
  9. J. S. Lee, M. J. Park, H. I. Shin, and J. C Lee, 'Properties of Glass-Ceramics in the System $CaO-TiO_2-SiO_2$ with the Additives of $Al_2O_3,\;ZrO_2$, and $B_2O_3$ for Use in the Solid Oxide Fuel Cells(in Korean),' J. Kor. Ceram. Soc., 5 [4] 336-40 (1999)
  10. J. S. Yu and J. C. Lee, 'Seals for SOFC,' Ceramist, 7 [6] 80-5 (2004)
  11. S. P. Simner and J. W. Stevenson, 'Compressive Mica Seals for SOFC Applications,' J. Power Sources, 102 [2] 310-16 (2001) https://doi.org/10.1016/S0378-7753(01)00811-4
  12. Y. S. Chou and J. W. Stevenson, 'Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness,' J. Power Sources, 124 [2] 473-78 (2002) https://doi.org/10.1016/S0378-7753(03)00805-X
  13. Y-S. Chou, J. W. Stevenson, and L. A. Chick, 'Ultra-Low Leak Rate of Hybrid Compressive Mica Seals for Solid Oxide Fuel Cells,' J. Power Sources, 112 [1] 130-36 (2002) https://doi.org/10.1016/S0378-7753(02)00356-7
  14. Y. S. Chou, J. W. Stevenson, and L. A. Chick, 'Novel Compressive Mica Seals with Metallic Interlayers for Solid Oxide Fuel Cell Applications,' J. Am. Ceram. Soc., 86 [6] 1003-07 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03408.x
  15. Y. S. Chou and J. W. Stevenson, 'Mid-Term Stability of Novel Mica-Based Compressive Seals for Solid Oxide Fuel Cells,' J. Power Sources, 115 [2] 274-78 (2003) https://doi.org/10.1016/S0378-7753(03)00020-X
  16. Y S. Chou and J. W. Stevenson, 'Thermal Cycling and Degradation Mechanisms of Compressive Mica-Based Seals for Solid Oxide Fuel Cells,' J. Power Sources, 112 [2] 37683 (2002)
  17. Y. S. Chou and J. W. Stevenson, 'Novel Infiltrated Phlogopite Mica Compressive Seals for Solid Oxide Fuel Cells,' J. Power Sources, 135 72-8 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.037
  18. J. Mencik, 'Strength and Fracture of Glass and Ceramics,' Glass Science and Technology 12, Elsevier Science Publishing (1992)
  19. X. Qi, F. T. Akin, and Y S. Lin, 'Ceramic-Glass Composite High Temperature Seals for Dense Ionic-Conducting Ceramic Membranes,' J. Membrane Sci., 193 185-93 (2001) https://doi.org/10.1016/S0376-7388(01)00488-4