대기압 플라스마에 의한 폴리우레탄 필름의 표면 개질

Surface Modification of Polyurethane Film Using Atmospheric Pressure Plasma

  • 양인영 (충남대학교 공과대학 화학공학과) ;
  • 명성운 (충남대학교 공과대학 화학공학과) ;
  • 최호석 (충남대학교 공과대학 화학공학과) ;
  • 김인호 (충남대학교 공과대학 화학공학과)
  • Yang In-Young (Department of Chemical Engineering, Chungnam National University) ;
  • Myung Sung-Woon (Department of Chemical Engineering, Chungnam National University) ;
  • Choi Ho-Suk (Department of Chemical Engineering, Chungnam National University) ;
  • Kim In-Ho (Department of Chemical Engineering, Chungnam National University)
  • 발행 : 2005.12.01

초록

상업용 폴리우레탄(PU) 필름의 표면 개질 목적으로 대기압에서 플라스마를 발생시키기 위한 dielectric barrier discharge(DBD) 구조의 평판형 플라스마 반응기 내에서 이온화된 아르곤 플라스마를 사용하였다. 플라스마 처리 공정변수인 처리 시간, 처리 RF-power, 아르곤 가스 유속을 변화시켜가며 접촉각을 측정하여 젖음성과 표면 자유 에너지 변화를 알아보았고, 필름 표면 위에 과산화물을 최대로 도입시키기 위해 플라스마 처리 공정변수를 최적화하였다. 대기압 플라스마 처리 시간 70초, RF-power 120 W, 아르곤 가스유속 6 liter per minute(LPM)에서 가장 높은 젖음성과 표면 자유 에너지 값을 보였고, 1,1-diphenyl-2-picrylhydrazy(DPPH) 법을 사용하여 PU 필름의 표면에 생성된 과산화물의 농도를 정량한 결과, 처리 시간 30초, RF-power 80 W, 아르곤 가스유속 6 LPM의 플라스마 처리 조건에서 최대 2.1 nmol/$\cm^{2}$의 과산화물이 생성되었다.

Commercial polyurethane film (PU) was modified with Ar plasma ionized in dielectric barrier discharge (DBD) plate-type reactor under atmospheric pressure. We measured the change of the contact angle and the surface fee energy with respect to the plasma treatment conditions such as treatment time, RF-power, and Ar gas flow rate. We also optimized the plasma treatment conditions to maximize the surface peroxide concentration. At the plasma treatment time of 70 sec, the power of 120 W and the Ar gas flow rate of 5 liter per minute (LPM), the best wettability and the highest surface fee energy were obtained. The 1,1 diphenyl-2-picrylhydrazyl (DPPH) method confirmed that the surface peroxide concentration was about 2.1 nmol/$\cm^{2}$ at 80 W, 30 sec, 6 LPM.

키워드

참고문헌

  1. E. T. Kang, K. G. Neoh, Z. F. Li, K. L. Tan, and D. J. Liaw, Polymer, 39, 2429 (1998) https://doi.org/10.1016/S0032-3861(97)00587-9
  2. D. Hegemann, H. Brunner, and C. Oehr, Nucl. Instrum. Meth.B, 208, 281 (2003) https://doi.org/10.1016/S0168-583X(03)00644-X
  3. S. Yang and M. C. Gupta, Surf. Coat. Technol., 187, 172 (2004) https://doi.org/10.1016/j.surfcoat.2004.03.057
  4. R. V. Dabhade, Dhananjay S. Bodas, and S. A. Gangal, Sensor Actuat. B-Chem., 98, 37 (2004) https://doi.org/10.1016/j.snb.2003.08.020
  5. Y. S. Kim, O. J. Kwon, E. H. Kim, S. W. Myung, and H. S. Choi, HWAHAK KONGHAK, 41, 224 (2003)
  6. K. D. Park, Y. H. Kim, D. G. Han, and K. S. Ji, Rubber Technology, 3, 111 (2002)
  7. M. E. Ryan and J. P. S.Badyal, Macromolecules, 28,1377 (1995) https://doi.org/10.1021/ma00109a008
  8. J. H. Jang, S. I. Eom, and Y. H. Kim, J Korean Fiber Society, 39, 100 (2002)
  9. C. Y. Huang and C. L. Chen, Surf. Coat. Technol., 153,194 (2002) https://doi.org/10.1016/S0257-8972(01)01675-9
  10. Y. H. Yeom, S. W. Myung, and H. S. Choi, Korean Chem. Eng. Res., 42, 89 (2004)
  11. T. Yamanoto, M. Okubo, N. Imai, and Y. Mori, Plasma Chem. Plasma P., 24, 1 (2004) https://doi.org/10.1023/B:PCPP.0000004878.61688.4d
  12. C. Liu, N. M. D. Brown, and B. J. Meenan, Surf. Sci., 575, 273 (2005) https://doi.org/10.1016/j.susc.2004.11.026
  13. R. Seebock, H. Esrom, M .Charbonnier, and M. Romand, Plasmas and Polymers, 5, 103 (2000) https://doi.org/10.1023/A:1009587916382
  14. M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, Int. J. Adhes. Adhes., 24, 171 (2004) https://doi.org/10.1016/j.ijadhadh.2003.09.006
  15. J. Toshifuji, T. Katsumata, H. Takikawa, T. Sakakibara, and I. Shimizu, Surf. Coat. Technol., 171, 302 (2003)
  16. Y. M. Chung, M. J. Jung, J. G. Han, M. W. Lee, and Y. M. Kim, Thin Solid Films, 447-448, 354 (2004) https://doi.org/10.1016/S0040-6090(03)01080-0
  17. B. D. Beake, J. S. G. Ling, and G. Leggett, J. Mater. Chem., 8, 1735 (1998) https://doi.org/10.1039/a801194j
  18. E. T. Kang and K. L. Tan, Macromolecules, 29, 6872 (1996) https://doi.org/10.1021/ma960161g
  19. H. S. Joo, D. H. Lim, Y. J. Park, and H. J. Kim, J. Adh. Inter., 6, 19 (2005)
  20. Y. Zhang, S. W. Myung, H. S. Choi, I. H. Kim, and J. H. Choi, J. Ind. Eng. Chem., 8, 236 (2002) https://doi.org/10.1021/i500001a001
  21. K. H. Byun, I. K. Kang, H. S. Lim, J. H. Lee, and H. B. Lee, Polymer(Korea), 17, 186 (1993)
  22. M. Suzuki, A. Kishida, H. Iwata, and Y. Ikada, Macromolecules, 19, 1804 (1986) https://doi.org/10.1021/ma00161a005
  23. W. L. Lu, C. Y. Huang, and M. L. Roan, Surf Coat. Technol., 172, 251 (2003) https://doi.org/10.1016/S0257-8972(03)00337-2
  24. S. K. Oiseth, A. Korzer, B. Kasemo, and J. Lausmaa, Appl. Sur Sci., 202, 92 (2002) https://doi.org/10.1016/S0169-4332(02)00928-5
  25. S. N. Hwang, B. J. Jeon, and I. H. Jung, J. Korean Ind. & Eng. Chemistry, 9, 383 (1998)
  26. Y. Ozdemir and N. Hasirci, J. Mater. Sci.-Mater. M., 13, 1147(2002) https://doi.org/10.1023/A:1021185803716
  27. L. T. Nguyen, N. H. Sung, and N. P. Suh, J. Polym. Sci.: Polym. Lett. Ed., 18, 541 (1980) https://doi.org/10.1002/pol.1980.130180805
  28. M. J. Kim and E. D. Seo, Polymer(Korea), 26, 279 (2002)
  29. Y. S. Seo, Polym. Sci. Technol.,13, 759 (2002)
  30. I. K. Kang, O. H. Kwon, and K. H. Byun, J. Mater. Sci.-Mater. M., 7, 135 (1996) https://doi.org/10.1007/BF00121251
  31. L. Y. Ji, E. T. Kang, K. G. Neoh, and K. L. Tan, React. Funct. Polym., 46, 145 (2000) https://doi.org/10.1016/S1381-5148(00)00048-1
  32. J. Zhang, C. Q. Cui, and T. B. Lim, Chem. Mater, 11, 1061 (1999) https://doi.org/10.1021/cm981046i
  33. H. Yasuda, Plasma Polymerization, Academic Press, Orlando, p 295 (1985)
  34. U. Konig, M. Nitschke, A. Menning, G. Eberth, M. Pilz, C. Arnhold, F. Simon, G. Adam, and C. Werner, Colloid Surface B, 24, 63 (2002) https://doi.org/10.1016/S0927-7765(01)00247-8
  35. I. L. J. Dogue, N. Mermiliod, and R. foerch, Nucl. Instrum. Meth. B, 105, 164 (1998) https://doi.org/10.1016/0168-583X(95)00543-9