Effects of Hydraulic Retention Time and Cycle Time on the Sewage Treatment of Intermittently Aerated Nonwoven Fabric Filter Bioreactor

간헐포기식 부직포 여과막 생물반응조에서 체류시간 및 주기시간이 하수처리에 미치는 영향

  • Kim, Taek-Su (School of Environmental & Civil Engineering, Inha University) ;
  • Bae, Min-Su (School of Environmental & Civil Engineering, Inha University) ;
  • Cho, Kwang-Myeung (School of Environmental & Civil Engineering, Inha University)
  • 김택수 (인하대학교 환경토목공학부) ;
  • 배민수 (인하대학교 환경토목공학부) ;
  • 조광명 (인하대학교 환경토목공학부)
  • Published : 2005.01.31

Abstract

This study was carried out to investigate the removal efficiency of an intermittently aerated nonwoven fabric filter bioreactor fed continuously with domestic sewage. The hydraulic retention time(HRT) of the reactor was reduced from 12 hrs to 10 hrs to 8 hrs during an experimental period of 17 months. In order to search an optimum aeration/nonaeration time ratio for the nitrogen removal at each HRT, the cycle times of 3, 2 and 1 hr were tested at the aeration/nonaeration time ratio of 1. Then, the aeration/nonaeration time ratio was changed from 50 min/70 min to 40 min/80 min to 30 min/90 min at the cycle time of 2 hr which showed the best nitrogen removal. During the experimental period, the effluent SS concentration was always below 1.2 mg/L with more than 95% of BOD removal efficiency. The highest nitrogen removal of 90.1% was observed at the aeration/nonaeration time ratio of 40 min/80 min at the HRT of 10 hr. Oxidation-reduction potential could represent the degree of the nitrification and denitrification reaction in the reactor.

본 연구에서는 간헐적으로 포기되는 부직포 여과막 생물반응조에 하수를 연속적으로 주입하면서 수리학적 체류시간(HRT)을 12, 10 및 8시간으로 감소시키면서 17개월간 실험을 실시하였다. 먼저 각 HRT에서 질소 제거효율이 가장 좋은 포기/비포기 시간비를 찾기 위하여 포기/비포기 시간비 1에서 주기시간을 3, 2, 및 1시간으로 변화시키며 질소 제거효율을 비교한 후, 질소 제거효율이 가장 좋았던 2시간의 주기시간에서 포기/비포기 시간비를 다시 50분/70분, 40분/80분 그리고 30분/90분으로 변화시키면서 질소 제거효율을 비교하였다. 실험기간 동안 처리수의 SS농도는 항상 1.2 mg/L 미만으로 유지되었으며, BOD 제거효율은 95% 이상을 나타내었다. 모든 HRT에서 최대 질소 제거효율을 나타낸 포기/비포기 시간비는 40분/80분이었으며, HRT 10시간에서 질소 제거효율이 90.1%로 가장 높았다. 그리고 ORP가 반응조 내의 질산화 및 탈질 정도를 잘 나타냄을 알 수 있었다.

Keywords

References

  1. Buisson, H., Cote, P., Praderie, M., and Paillard, H., 'The use of immersed membranes for upgrading wastewater treatment plants,' Water Sci. Technol., 37(9), 89-95(1988)
  2. Chemchaisri, C, Yamamoto, K., and Vigneswaran, S., 'Household membrane bioreactor in domestic wastewater treatment,' Water Sci. Technol, 27(1), 171-178(1993)
  3. Chaize, S. and Huyard, A., 'Membrane bioreactor on domestic wastewater treatment : Sludge production and modeling approach,' Water Sci. Technol, 23(7-9), 223-229(1998)
  4. Choi, J. H., Dockko, S., Fukushi, K., and Yamamoto, K., 'A novel application of a submerged nanofiltration membrane bioreactor(NF MBR) for wastewater treatment,' Desalination, 146, 413-420(2002) https://doi.org/10.1016/S0011-9164(02)00524-6
  5. U.S. EPA., Wastewater Technology Fact Sheet-Sequencing Batch Reactors, Washington, D.C.(1999)
  6. Hiroyuki, A., Kenichi, K., Katsuto, I., Tetsuya, K., and Youichi, A., 'Intermittent aeration for nitrogen removal in small oxidation ditches,' Water Sci. Technol., 22(3-4), 131-138(1990)
  7. 전병희, 김도환, 최은희, 배현, 김성신, 김창원, 'DO와 ORP를 이용한 축산폐수처리 SBR운전 제어', 한국물환경학회지, 18(5), 545-551(2002)
  8. Li, B. and Bishop, P., 'Oxidation-reduction potential(ORP) regulation of nutrient removal in activated sludge wastewater treatmnet plants,' Water Sci. Technol., 46(1-2), 35-39(2002)
  9. Tomlins, Z., Thomas, M., Keller, J., Audic, J.-M., and Urbain, V., 'Nitrogen removal in a SBR using the OGAR process control system,' Water Sci. Technol, 46(4-5), 125-130(2002)
  10. Peng, Y. Z., Gao, J. F., Wang, S. Y., and Sui, M. H., 'Use pH and ORP as fuzzy control parameters of denitrification in SBR process,' Water Sci. Technol., 46(4-5), 131-137(2002)
  11. Zipper, T., Fleischmann, N., and Haberl, R., 'Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential,' Water Sci. Technol, 38(3), 307-314(1998) https://doi.org/10.1016/S0273-1223(98)00470-3
  12. Plisson-Saune, S., Capdeville, B., Mauret, M., Deguin, A., and Baptiste, P., 'Real-time control of nitrogen removal using three ORP bending-points: Signification, control strategy and results,' Water Sci. Technol, 33(1), 275-280(1996) https://doi.org/10.1016/0273-1223(96)00180-1
  13. Paul, E., Plisson-Saune, S., Mauret, M., and Cantet, J., 'Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO,' Water Sci. Technol, 38(3), 299-306(1998) https://doi.org/10.1016/S0273-1223(98)00469-7
  14. 조광명,'여과막 활성슬러지공법에 의한 유기성 폐수의 처리', 대한토목학회논문집, 28(6), 119-133 (1980)
  15. 임상호, 배민수, 조광명, '부직포 여과막 생물반응조를 이용한 하수의 처리', 한국물환경학회지, 19(1), 99-107 (2003)
  16. 황도연, 강복춘, 조광명, '간헐 폭기식 부직포 여과막 생물반응조에서 폭기/비폭기 시간비가 하수의 유기물 및 질소제거에 미치는 영향', 대한환경공학회지, 25(2), 258 - 265 (2003)
  17. APHA, Standard Methods for the Examination of Water and Wastewater, 20th Ed., Washington D.C., USA(1998)
  18. 환경부 고시 제 96-32호, 수질환경오염공정시험법(1996)
  19. Fuerhacker, M., Bauer, H., Ellinger, R., Sree, U., Sch-mid, H., Zibuschka, F., and Puxbaum, H., 'Approach for a novel control strategy for simultaneous nitrification/ denitrification in activated sludge reactors,' Water Res., 34(9), 2499-2506(2000) https://doi.org/10.1016/S0043-1354(00)00016-6