The Partitioning Characteristics of Heavy Metals in Soils of Ulsan by Sequential Extraction Procedures

단계별추출법에 의한 울산지역 토양 중의 중금속 Partitioning 특성연구

  • Lee, Byeong-Kyu (Department of Civil and Environmental Engineering, University of Ulsan) ;
  • Koh, Il-Ha (Department of Civil and Environmental Engineering, University of Ulsan) ;
  • Kim, Haeng-Ah (University of Massachusetts)
  • 이병규 (울산대학교 건설환경공학부) ;
  • 고일하 (울산대학교 건설환경공학부) ;
  • 김행아 (매사츄세츠 대학교 환경공학과)
  • Published : 2005.01.31

Abstract

This study analyzed total concentrations and existing forms of heavy metals in soils of Ulsan using a sequential extraction method. Soil samples were collected from 6 categorized areas including green, residential, heavy traffic, petrochemical industrial complex(IC), mechanical and shipbuilding IC, and non-ferrous metal IC areas. which represent different emission characteristics. The highest total concentrations of heavy metals by a sequential extraction analysis were observed in the soils collected from the non-ferrous metal IC area, followed by the mechanical and shipbuilding IC and heavy traffic areas. Dominant(> 50%) existing forms of Cd, Cr and Ni were residual forms followed by Fe and Mn oxides in almost areas. Residual fractions in the non-ferrous metal IC areas were relatively lower than those in other areas. However, the fractions of organic and sulphides in the IC areas were higher. The dominant farms of Cu were much different with the investigated areas. In most areas, the dominant forms of Pb and Zn were Fe and Mn oxides, followed by residual fraction for Pb. The exchangeable and carbonate fractions represent mobility of metallic elements in soils. They are also significantly affected by the environmental renditions, such as pHs of soil and rainfall. In this study the exchangeable and carbonate fractions were lower than other fractions. Because the total concentrations of heavy metals in the soils of the non-ferrous metal IC area were extremely high, however, the mobile fractions of heavy metals in the IC area would be significant. Thus a large amount of heavy metals can be released into plants, water bodies, and soils. Therefore, urgent measures, such as source control for soil remediation of heavy metals, in the non-ferrous metal IC areas are essentially required. Analysis results obtained from the sequential extraction and the aqua regia extraction showed a high correlation, whose determination coefficients(R2) of heavy metals except Cd approximately ranged from 0.7 to 0.9.

산업도시인 울산지역의 토양을 대상으로 단계별추출법을 통해 토양 내 축적된 중금속의 총 농도와 존재형태에 대해서 분석하였다. 울산지역을 오염배출원의 특성별로 6개(녹지, 주거지, 교통밀집, 기계 및 조선공단, 석유화학공단, 비철금속공단) 지역으로 구분하여 토양시료를 채취하였다. 연속추출법에 의하여 분석한 토양 중 중금속의 총 농도는 대체적으로 비철금속공단지역 >> 기계 및 조선공단지역 > 교통밀집지역 > 녹지 > 주거지의 순으로 나타났다. 거의 대부분의 지역에서 Cd, Cr 및 Ni은 50% 이상이 residual의 형태로 존재하였고 다음으로 Fe & Mn oxide 형태였다. 그러나 다른 지역보다 다소 높은 중금속 농도를 보였던 비철금속 공단지역에서는 residual의 존재비율이 낮았으며, 다른 지점에 비해 organic & sulfides의 비율이 높았다. Cu는 지역에 따라 다소 다른 존재형태를 보였다. Pb와 Zn은 Fe & Mn oxide가 가장 중요한 존재형태였고 Pb의 경우 그 다음으로 residual이 높은 존재형태를 보였다. 토양이나 빗물의 pH와 같은 환경 조건의 변화에 따라 쉽게 자연계로 유입될 수 있는 이동성을 가진 exchangeable 및 carbonates형태의 중금속이 차지하는 비율은 분석대상 전 지점에 걸쳐 대체적으로 낮은 것으로 나타났다. 그러나 비철금속 공단지역의 토양에서는 중금속의 총 농도가 심각하게 높게 나타났다. 그래서 토양 중 이동성 중금속의 상대적인 존재비율은 낮을지라도, 그 지역의 매우 높은 총 농도 때문에 많은 양의 중금속이 자연계에 유입될 가능성이 크다고 볼 수 있다. 따라서 배출원에서의 사전 오염방지 대책이나 중금속에 오염된 토양의 복원 등 긴급한 대책이 절실한 것으로 판단된다. 또한, 왕수추출법과 연속추출법에서 얻어진 중금속의 총 농도는 Cd를 제외하고 전 항목에 대해 높은 결정계수(0.7 < R2 < 0.9)를 보였다.

Keywords

References

  1. Alloway, B. J., The origins of heavy metals in soils. In: Alloway, BJ (Eds.), Heavy Metals in Soil. John Wiley & Sons, 3p(2000)
  2. Azimi, S., Ludwig, A., Thvenot, D. R., and Colin, J. L., 'Trace metal determination in total atmospheric deposition in rural and urban areas,' Sci. Total Environ., 308(1-3), 247-256(2003) https://doi.org/10.1016/S0048-9697(02)00611-3
  3. Hoff, R. M., Strachan, W. M. J., Sweet, C. W., Chan, C. H., Shackleton, M., Bidleman, T. F., Brice, K. A., Burniston, D. A., Cussion, S., Gatz, D. F., Harlin, K., and Schroeder, W. H., 'Atmospheric deposition of toxic chemicals to the Great Lake: A review of data through 1994,' Atmos. Environ., 30, 3505-3527(1996) https://doi.org/10.1016/1352-2310(96)00046-5
  4. Kanti Deb, M. K., Thakur, M., Mishra, R. K., and Bo-dahankar, N., 'Assessment of atmospheric arsenic level in airborne dust particulates of un urban city of central India,' Water, Air, Soil Pollut., 140, 57-71(2002) https://doi.org/10.1023/A:1020109806637
  5. Olajire, A. A., 'A survey of heavy metal deposition in Nigeria using the moss monitoring method,' Environ. Internat., 24(8), 951-958(1998) https://doi.org/10.1016/S0160-4120(98)00078-6
  6. Wilcke, W. and Kaupenjohann, M., 'Heavy metal distribution between soil aggregate core and surface fractions along gradients of deposition from the atmosphere,' Geoderma, 83(1-2), 55-66(1998) https://doi.org/10.1016/S0016-7061(97)00135-3
  7. 나덕재, 이병규,'산업도시 대기 중 PM 10의 농도 및 금속원소 성분의 특성 연구', 한국대기환경학회지, 16(1), 23 - 35 (2000)
  8. Andrea, L., Benin, J., Sargent, D., Dalton, M., and Roda, S., 'High concentration of heavy metals in neighborhood near ore smelters in north Mexico,' Environ. Health Perspect., 107(4), 279-284(1999) https://doi.org/10.2307/3434594
  9. Rautio, P., Huttunen, S., and Lamppu, J., 'Effects of sulphur and heavy metal deposition on foliar chemistry of scots pines in finnish lapland and on the Kola Peninsula,' Chemosphere, 36(4-5), 979-984(1998) https://doi.org/10.1016/S0045-6535(97)10158-8
  10. Shallari, S., Schwartz, C, Hasko, A., and Morel, J. L., 'Heavy metals in soils and plants of Serpentine and industrial sites of Albania,' Sci. Total Environ., 209, 133-142(1998) https://doi.org/10.1016/S0048-9697(97)00312-4
  11. Yarlagadda, P. S., Matsumoto, M. R., VanBenscoten, J. E., and Kathuria, A., 'Characteristics of heavy metals in contaminated soils,' J. Environ. Eng., 121, 276-286 (1995) https://doi.org/10.1061/(ASCE)0733-9372(1995)121:4(276)
  12. Gerhardsson, L., Wester, P. O., Nordberg, G. F., and Brune, D., 'Chromium, cobalt and lanthanum in lung, liver and kidney tissue from deceased smelter workers,' Sci. Total Environ., 37, 233 246(1984)
  13. Mcalpine, D. and Araki, S., 'Minamata disease: An unusual neurological disorder caused by contaminated fish,' The Lancet, 272, 629-631(1958) https://doi.org/10.1016/S0140-6736(58)90348-9
  14. Zkov, Z. and Kockov, E., 'Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin,' Czech Republic, Water Sci. Technol., 39(12), 225-232(1999)
  15. Chu, K. W. and Chow, K. L., 'Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative,' Aquat. Toxicol., 61(1-2), 53-64(2002) https://doi.org/10.1016/S0166-445X(02)00013-9
  16. Nascarella, M. A., Stoffolano Jr, J. G., Stanek III, E. J., Kostecki, P. T., and Calabrese, E. J., 'Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly Phormia regina,' Meig. Environ. Pollut., 124(2), 257-262(2003) https://doi.org/10.1016/S0269-7491(02)00479-7
  17. 이병규, 고일하, '울산지역 토양 중의 중금속 오염도 분석연구', 대한환경공학회지, 25(11), 1436-1447 (2003)
  18. Ure, A. M., 'Single extraction schemes for soil analysis and related applications,' Sci. Total Environ., 178, 3-10(1996) https://doi.org/10.1016/0048-9697(95)04791-3
  19. Tessier, A., Campbell, P. G. C., and Bisson, M., 'Sequential extraction procedure for the speciation of particulate trace metals,' Anal. Chem., 51, 844-850(1979) https://doi.org/10.1021/ac50043a017
  20. Kim, N. D. and Fergusson, J. E., 'Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils,' Sci. Total Environ., 105, 191-209(1991) https://doi.org/10.1016/0048-9697(91)90341-B
  21. Tessier, A., Campbell, P. G. C., and Bisson, M., 'Particulate trace metal speciation in stream sediments and relationships with grain size: Implications for geoche-mical exploration,' J. Geochem. Explor., 16, 77-104(1982) https://doi.org/10.1016/0375-6742(82)90022-X
  22. Rauret, G., 'Extraction procedures for the determination of heavy metals in contaminated soil and sediment,' Talanta, 46, 449-455(1998) https://doi.org/10.1016/S0039-9140(97)00406-2
  23. Morera, M. T., Echeverra, J. C, Mazkiarn, C, and Garrido, J. J., 'Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils,' Environ. Pollut., 113, 135-144(2001) https://doi.org/10.1016/S0269-7491(00)00169-X
  24. 정명채,'토양중의 중금속 연속추출방법과 사례연구', 대한환경지질학회지, 27(5), 469-477(1994)
  25. Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., and Garden, L. M., 'A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land,' Anal. Chim. Acta., 363, 45-55(1998) https://doi.org/10.1016/S0003-2670(98)00057-9
  26. Davidson, C. M., Hursthouse, A. S., Tognarelli, D. M., Ure, A. M., Graham, J., and Urquhart, G. J., 'Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment,' Anal. Chim. Acta, In Press, Corrected Proof, Available online 16 January (2004)
  27. Usero, J., Gamero, M., Morillo, J., and Gratia, I., 'Comparative study of three sequential extraction procedures for metals in marine sediments,' Environ. Internat., 24, 487-496(1998) https://doi.org/10.1016/S0160-4120(98)00028-2
  28. Abollino, O., Aceto, M., Malandrino, M., Mentasti, E., Sarzanini, C, and Barberis, R., 'Distribution and mobility of metals in contaminated sites, Chemometric investigation of pollutant profiles,' Environ. Pollut., 119, 177-193(2002) https://doi.org/10.1016/S0269-7491(01)00333-5
  29. Kaasalainen, M., and Yli-Halla, M., 'Use of sequential extraction to assess metal partitioning in soils,' Environ., Pollut., 126, 225-233(2003) https://doi.org/10.1016/S0269-7491(03)00191-X
  30. FitzPatrick, E. A., Soils : their formation, classifican and distribution, Longman Science & Technical, London, p. 353(1986)
  31. Harrrison, R. M., Tilling, R., Romero, M. S. C, Harrad, S., Jarvis, K., 'A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment,' Atmos. Environ., 37, 2391-2402(2003) https://doi.org/10.1016/S1352-2310(03)00122-5
  32. Baker, D. E., 'Copper. Heavy Metals in Soils,' B. J. Alloway, Edn., John Wiley & Sons, Inc., 151-176 (1990)
  33. 김광구, 김경웅, 김인수, 정영욱, 민정식, '연속추출법에 의한 국내 폐광지역 광미의 중금속 특성평가', 대한환경공학회지, 21(3), 463-472 (1999)