The Effect of Acetylcholine on the Intracellular $Ca^{2+}$ Increase of the Mouse Early 2-cell Embryos

생쥐 초기 2-세포 배의 세포내 칼슘 증가에 미치는 Acetylcholine의 영향

  • Yoon S. Y. (Department of Biology, College of Natural Sciences, Sungshin Women's University) ;
  • Kang D. W. (Dept. of Physiology, College of Medicine, Gyeongsang National University) ;
  • Bae I. H. (Department of Biology, College of Natural Sciences, Sungshin Women's University)
  • 윤숙영 (성신여자대학교 자연과학대학 생물학과) ;
  • 강다원 (경상대학교 의과대학 생리학교실) ;
  • 배인하 (성신여자대학교 자연과학대학 생물학과)
  • Published : 2005.12.01

Abstract

Many studies have shown that the development of mouse early 2-cell embryos in vitro is related with the intracellular $Ca^{2+}$ changes. In ICR strain mouse, the development of embryos arrests at early 2-cell stage, but the arrested early 2-cell embryos can be rescued by the addition of $Ca^{2+}$-related materials. Acetylcholine (ACh) increases intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) via the mAChR-PLC-IP3 pathway in mouse oocytes. We examined whether ACh rescues 2-cell block in mouse. In early 2-cell embryos, ACh increased [$Ca^{2+}$]i in a dose-dependent manner (p<0.001), and had an effect on rescue of 2-cell block and embryonic development. To identify the signal pathway involved in ACh-induced rescue of 2-cell block, we first applied an agonist of ACh receptor (AChR). Like ACh, carbachol increased intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) and atropine, an antagonist of ACh receptor, blocked the ACh-induced $Ca^{2+}$ increase. In $Ca^{2+}$-free medium, ACh also increased [$Ca^{2+}$]i, indicating that $Ca^{2+}$ increased by ACh is mainly released from the intracellular $Ca^{2+}$ store. The ACh-induced $Ca^{2+}$ increase was blocked by PLC inhibitor (U73122), ryanodine receptor (RyR) antagonist (dantrolene), and CaM KII inhibitor (KN-93), but not by IP3R antagonists (xestospongin C). These results show that ACh increases intracellular $Ca^{2+}$ concentration via mAChR/PLC/RyR, and this contributes to the rescue of 2-cell block.

체외 배양 과정 중에 나타나는 생쥐 초기 2-세포 배의 "in vitro 2-cell block" 현상은 세포내 $Ca^{2+}$ 농도 변화와 밀접한 관련이 있다. 다양한 종류의 세포에서 acetylcholine은 세포막에 존재하는 muscarnic acetylcholine receptor를 통해 세포내 $Ca^{2+}$ 농도 증가를 유도한다. 본 실험에서는 생쥐 "in vitro 2-cell block" 현상에 있어서 ACh의 영향을 알아보기 위해 세포 내 $Ca^{2+}$ 농도 조절 물질을 처리한 후, 공초점 현미경을 이용하여 세포 내 $Ca^{2+}$ 농도 변화를 기록하였다. ACh은 세포 내에서 농도 의존적으로 $Ca^{2+}$ 농도 증가를 유도하며, "in Vitro 2-cell block" 현상을 극복하여 포배기로 발생을 유도하였다. ACh에 의한 $Ca^{2+}$ 농도 증가가 세포막에 존재하는 ACh receptor를 경유하여 나타나는 반응인지를 알아보기 위해 ACh receptor의 저해제인 atropine을 전처리한 결과, ACh에 의한 $Ca^{2+}$ 농도 증가가 완전히 저해되었다. 초기 2-세포 배에서 ACh이 결합하는 receptor의 종류를 확인하기 위하여 carbachol과 nicotin tartrate를 처리 하였다. Nicotinic AChR의 agonist인 nicotine tartrate 1 mM은 세포내 $Ca^{2+}$ 농도 증가를 보이지 않았다. 따라서 초기 2-세포 배의 세포막에는 muscarnic AChR가 기능적으로 작용함을 알 수 있다. ACh에 의한 세포내 $Ca^{2+}$ 농도 증가가 $Ca^{2+}$이 제거된 배양액에서도 나타나는 것으로 보아 ACh에 의한 세포내 $Ca^{2+}$ 변화는 주로 소포체와 같은 세포내 $Ca^{2+}$ 저장고로부터 분비됨을 알 수 있었다. 이러한 세포내 $Ca^{2+}$ 저장고로부터의 $Ca^{2+}$ 분비가 어떤 신호전달체계를 통해 나타나는 지를 조사하였다. 세포막의 PLC 저해제인 U73122를 전처리한 배는 ACh에 의한 $Ca^{2+}$ 농도 증가가 나타나지 않았으며, 세포 내 $Ca^{2+}$ 통로인 IP3R와 RyR의 저해제인 xestospongin과 heparin 혹은 dantrolene을 전처리한 결과 dantrolene에 의해 세포내 $Ca^{2+}$ 농도 증가가 억제되었다. 그리고 세포내 반복적인 $Ca^{2+}$ 농도 증가에 의해 활성도가 변화는 CaMKII의 작용을 확인하기 위하여 Ca MKII의 저해제인 KN-93을 전처리한 결과 $Ca^{2+}$ 농도 증가가 억제되는 것을 확인하였다. 이상의 결과로부터 ACh은 생쥐 초기 2-세포 배에서 ryano-dine receptor를 통하여 세포내 $Ca^{2+}$ 저장고로부터 $Ca^{2+}$ 분비를 유도하며, CaM KII에 의해서도 영향을 받는 것으로 보여진다. 생쥐 초기 2-세포 배에서 "in vitro 2-cell block"의 극복은 ACh에 의해 유도된 신호전달체계를 통해 세포내에 증가하는 $Ca^{2+}$ 농도 및 이에 따른 세포내 대사 작용의 활성화에 의하여 나타나는 것으로 생각된다.

Keywords

References

  1. Abramczuk J, Solter D and Koprowski H. 1977. The beneficial effect EDTA on development of mouse one-cell embryos in chemically defined medium. Dev. Biol., 61(2):378-383 https://doi.org/10.1016/0012-1606(77)90308-6
  2. Albrieux M, Sardet C and Villaz M. 1997. The two intracellular $Ca^{2+}$ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians. Dev. Biol., 189(2): 174-85 https://doi.org/10.1006/dbio.1997.8674
  3. Arnoult C, Albrieux M, Antoine AF, Grunwald D, Marty I and Villaz M. 1997. A ryanodine-sensitive calcium store in ascidian eggs monitored by whole-cell patch-clamp recordings. Cell Calcium., 21(2):93-101 https://doi.org/10.1016/S0143-4160(97)90033-6
  4. Ayabe T, Kopf GS and Schultz RM. 1995. Regulation of mouse egg activation: presence of ryanodine receptors and effects of microinjected ryanodine and cyclic ADP ribose on uninseminated and inseminated eggs. Development, 121 (7):2233-44
  5. Bae IH and Yoon SY. 1995. The effect of $Ca^{2+}$ inhibitor on the in vitro 2-cell block of the mouse. Kor. J. Fert. Steril., 22:1-10
  6. Chatot CL, Ziomek CA, Bavister BD, Lewis JL and Torres I. 1989. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil., 86(2):679-688 https://doi.org/10.1530/jrf.0.0860679
  7. De Koninck P and Schulman H. 1998. Sensitivity of CaM kinase II to the frequency of $Ca^{2+}$ oscillations. Science, 279:227-30 https://doi.org/10.1126/science.279.5348.227
  8. Dupont G and Goldbeter A. 1998. CaM kinase II as frequency decoder of $Ca^{2+}$ oscillations. Bioessays, 20:607-610 https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F
  9. Dupont G, McGuinness OM, Johnson MH, Berridge MJ and Borgese F. 1996. Phospholipase C in mouse oocytes: characterization of beta and gamma isoforms and their possible involvement in sperm-induced $Ca^{2+}$ spiking. Biochem. J., 316(Pt 2): 583-91 https://doi.org/10.1042/bj3160583
  10. Emerson M, Travis AR, Bathgate R, Stojanov T, Cook DI, Harding E, Lu DP and O'Neill C. 2000. Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. J. Biol. Chem., 275(29): 21905-21913 https://doi.org/10.1074/jbc.M001719200
  11. Erbach GT, Lawitts JA, Papaioannou VE and Biggers JD. 1994. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod., 50(5):1027-1033 https://doi.org/10.1095/biolreprod50.5.1027
  12. Fissore RA, Reis MM and Palermo GD. 1999. Isolation of the $Ca^{2+}$ releasing component(s) of mammalian sperm extracts: the search continues. Mol. Hum. Reprod., 5(3):189-92 https://doi.org/10.1093/molehr/5.3.189
  13. Goddard MJ and Pratt HP. 1983 Control of events during early cleavage of the mouse embryo: an analysis of the '2-cell block'. J. Embryol. Exp. Morphol., 73: 111-133
  14. Harrison PK, Falugi C, Angelini C and Whitaker MJ. 2002. Muscarinic signalling affects intracellular calcium concentration during the first cell cycle of sea urchin embryos. Cell Calcium, 31(6): 289-297 https://doi.org/10.1016/S0143-4160(02)00057-X
  15. Inagaki N, Goto H, Ogawara M, Nishi Y, Ando S, and Inagaki M. 1997. Spatial patterns of $Ca^{2+}$ signals define intracellular distribution of a signaling by $Ca^{2+}$/Calmodulin-dependent protein kinase II. J. Biol. Chem., 272:25195-9 https://doi.org/10.1074/jbc.272.40.25195
  16. Jellerette T, Kurokawa M, Lee B, Malcuit C, Yoon SY, Smyth J, Vermassen E, De Smedt H, Parys JB and Fissore RA. 2004. Cell cycle-coupled [$Ca(^{2+})$](i) oscillations in mouse zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Dev. Biol., 274(1):94-109 https://doi.org/10.1016/j.ydbio.2004.06.020
  17. Kang D, Park JY, Han J, Bae IH, Yoon SY, Kang SS, Choi WS and Hong SG 2003. Acetylcholine induces $Ca^{2+}$ oscillations via m3/m4 muscarinic receptors in the mouse oocyte. Pflugers Arch., 447(3):321-7 https://doi.org/10.1007/s00424-003-1184-y
  18. Kim JH, Machaty Z, Cabot RA, Han YM, Do HJ and Prather RS. 1998. Development of pig oocytes activated by stimulation of an exogenous G protein-coupled receptor. Biol, Reprod., 59(3):655-60 https://doi.org/10.1095/biolreprod59.3.655
  19. Kim JY and Saffen D. 2005. Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J. Biol. Chem., 280 (36):32035-32047 https://doi.org/10.1074/jbc.M500429200
  20. Kline JT and Kline D. 1994. Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release. Biol, Reprod., 50: 193-203 https://doi.org/10.1095/biolreprod50.1.193
  21. Kuroda R, Kontani K, Kanda Y, Katada T, Nakano T, Satoh Y, Suzuki N and Kuroda H. 2001. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding $Ca(^{2+})$ transients in fertilization of sea urchin eggs. Development, 128(22): 4405-4414
  22. Lucas TF, Avellar MC and Porto CS. 2004. Effects of carbachol on rat Sertoli cell proliferation and muscarinic acetylcholine receptors regulation: an in vitro study. Life Sci., 75(14):1761-73 https://doi.org/10.1016/j.lfs.2004.05.006
  23. Mattioli M, Barboni B and Gioia L. 1998. Membrane depolarization triggers maturation in meiotically arrested pig oocytes by activating P-type $Ca^{2+}$ -channels on the oolemma. J. Reprod. Fert. (abstract series 21), # 27
  24. Miyazaki S, Shirakawa H, Nakada K and Honda Y. 1993. Essential role of the inositol 1,4,5-trisphosphate receptor/$Ca^{2+}$ release channel in $Ca^{2+}$ waves and $Ca^{2+}$ oscillations at fertilization of mammalian eggs. Dev. Biol., 158(1):62-78 https://doi.org/10.1006/dbio.1993.1168
  25. Miyazaki S, Yuzaki M, Nakada K, Shirakawa H, Nakanishi S, Nakade Sand Mikoshiba K. 1992. Block of $Ca^{2+}$ wave and $Ca^{2+}$ oscillation' by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science, 257 (5067):251-255 https://doi.org/10.1126/science.1321497
  26. Moore GD, Kopf GS and Schultz RM 1993. Complete mouse egg activation in the absence of sperm by stimulation of an exogenous G protein-coupled receptor. Dev. Biol., 159(2):669-78 https://doi.org/10.1006/dbio.1993.1273
  27. Oettling G, Schmidt H and Drews U. 1989. An embryonic $Ca^{2+}$ mobilising muscarinic system in the chick embryo heart. J. Dev. Physio., 112: 85-94
  28. Paul-Pletzer K, Yamamoto T, Bhat MB, Ma J, Ikemoto N, Jimenez LS, Morimoto H, Williams PG and Parness J. 2002. Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor. J. Biol. Chem., 277(38):34918-23 https://doi.org/10.1074/jbc.M205487200
  29. Petr J, Urbankova D, Tomanek M, Rozinek J and Jilek F. 2002. Activation of in vitro matured pig oocytes using activators of inositol triphosphate or ryanodine receptors. Anim. Reprod. Sci., 15: 70(3-4):235-249
  30. Powers RD. 1982. Changes in mouse oocyte membrane potential and permeability during meiotic maturation. J. Exp. Zool., 221:365-371 https://doi.org/10.1002/jez.1402210312
  31. Putney Jr JW. 1998. Calcium signaling: up, down, up, down...what's the point? Science, 279:191-192 https://doi.org/10.1126/science.279.5348.191
  32. Rathouz MM, Vijayaraghavan S and Berg DK. 1995. Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons. J. Biol. Chem., 270(24):14366-75 https://doi.org/10.1074/jbc.270.24.14366
  33. Santella L. 1998. The role of calcium in the cell cycle: facts and hypotheses. Biochem. Biophys. Res. Commun., 244(2):317-324 https://doi.org/10.1006/bbrc.1998.8086
  34. Stehno-Bittel L, Krapivinsky G, Krapivinsky L, Perez-Terzic C and Clapham DE. 1995. The G protein beta gamma subunit transduces the muscarinic receptor signal for $Ca^{2+}$ release in Xenopus oocytes. J. Biol. Chem., 270(50): 30068-30074 https://doi.org/10.1074/jbc.270.50.30068
  35. Wehrens XH, Lehnart SE, Reiken SR and Marks AR. 2004. $Ca^{2+}$/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ. Res., 94(6):e61-70 https://doi.org/10.1161/01.RES.0000125626.33738.E2
  36. Williams CJ, Schultz RM and Kopf GS. 1992. Role of G proteins in mouse egg activation: stimulatory effects of acetylcholine on the ZP2 to ZP2f conversion and pronuclear formation in eggs expressing a functional m1 muscarinic receptor. Dev. Biol., 151(1):288-96 https://doi.org/10.1016/0012-1606(92)90233-7
  37. Wu H, Smyth J, Luzzi V, Fukami K, Takenawa T, Black SL, Allbritton NL and Fissore RA. 2001. Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol. Reprod., 64(5): 1338-49 https://doi.org/10.1095/biolreprod64.5.1338
  38. Yoon SY, Lee EM and Bae IH. 2003. The effect of $Ni^{2+}$ on the intracellular $Ca^{2+}$ increase of the mouse early 2-cell embryos. Kor. J. Fert. Steril., 30: 269-280
  39. Yoshida M, Sensui N, Inoue T, Morisawa M and Mikoshiba K. 1998. Role of two series of $Ca^{2+}$ oscillations in activation of ascidian eggs. Dev. Biol., 203(1):122-133 https://doi.org/10.1006/dbio.1998.9037
  40. Yoshida S. 1982. $Na^{+}$ and $Ca^{2+}$ spike produced by ions passing through calcium channels in mouse ovarian oocytes. Pflugers Arc., 395:84-86 https://doi.org/10.1007/BF00584975
  41. Yue C, White KL, Reed WA and Bunch TD. 1995. The existence of inositol 1,4,5-trisphosphate and ryanodine receptors in mature bovine oocytes. Development, 121 (8):2645-2654