Effects of Glucose Degradation Products on Human Peritoneal Mesothelial Cells

포도당분해산물이 사람 복막중피세포 활성화에 미치는 영향

  • 송재숙 (이화여자대학교 약학대학) ;
  • 이경림 (이화여자대학교 약학대학) ;
  • 하헌주 (이화여자대학교 약학대학)
  • Published : 2005.12.01

Abstract

Both high glucose and glucose degradation products (GDP) have been implicated in alterations of peritoneal membrane structure and function during long-term peritoneal dialysis (PD). The present study examined the role of GDP including methylglyoxal (MGO), acetaldehyde, and 3,4-dideoxyglucosone (3,4-DGE) in HPMC activation with respect to membrane hyperpermeability or fibrosis. The role of reactive oxygen species (ROS) and activation of protein kinase C (PKC) in GDP-induced HPMC activation were also examined. Using M199 culture medium as control, growth arrested and synchronized HPMC were continuously stimulated by MGO, acetaldehyde, and 3,4-DGE for 48 hours. Vascular endothelial growth factor (VEGF) was quantified as a marker of peritoneal membrane hyperpermeability and fibronectin and heat shock protein 47 (hsp47) as markers of fibrosis. Involvement of ROS and PKC was examined by the inhibitory effect of N-acetylcystein (NAC) or calphostin C, respectively. MGO significantly increased VEGF (1.9-fold), fibronectin (1.5-fold), and hsp47 (1.3-fold) secretion compared with control M199. NAC and calphostin C effectively inhibited MGO-induced VEGF upregulation. Acetaldehyde stimulated and 3,4-DGE inhibited VEGF secretion. Fibronectin secretion and hsp47 expression in HPMC were not affected by acetaldehyde or 3,4-DGE In conclusion, MGO upregulated VEGF and fibronectin secretion and hsp47 expression in HPMC, and PKC as well as ROS mediate MGO-induced VEGF secretion by HPMC. This implies that PKC activation and ROS generation by GDP may constitute important signals for activation of HPMC leading to progressive membrane hyperpermeability and accumulation of extracellular matrix and eventual peritoneal fibrosis.

상용 복막투석액에 함유된 고농도의 포도당과 포도당 분해산물(glucose degradation products: CDP)이 복막의 비후, 복막 투과성의 증가 및 한외여과 부전과 같은 복막의 구조적, 기능적 변화를 초래하리라 추정되고 있다. 본 연구에서는 CDP성분이 사람 복막중피세포 활성화에 미치는 영향을 검색하였고 또 이때 ROS와 PKC가 관여하는지를 검색하였다. 혈청이 배제된 M199 배양액으로 성장을 동일화시킨 사람 복막중피세포를 GDP인 methylglyoxal(MGO), acetaldehyde, 그리고 3,4-dioxyglucosone-3-ene(3,4-DGE)으로 48시 간 동안 자극하였고, 복막의 투과성에 대한 지표로서 혈관내피성장인자(vascular endothelial growth factor VEGF)를, 섬유화의 지표로서 fibronectin과 heat shock protein 47(hsp47)의 단백을 정량하였다. 활성산소족(reactive oxygen species:ROS)과 protein kinase C(PKC)의 관여여부는 각각 항산화제 N-acetylcystein(NAC)과 PKC 억제제 calphostin C의 억제 효과로 검색하였다. MGO는 대조군과 비교하여 VEGF 분비를 1.9배, fibronectin분비를 1.5배 그리고 hsp47 표현을 1.3배로 유의하게 증가시켰다(p<0.05). MGO에 의한 VEGF 상향 조절은 calphostin C와 NAC에 의하여 유의하게 억제되었다. 사람 복막중피세포에서 VEGF 분비는 acetaldehyde에 의하여 증가하였으나 3,4-DGE에 의하여 억제되었고, fibronectin 분비와 hsp47 표현은 acetaldehyde나 3,4-DGE에 의하여 영향을 받지 않았다. 이상을 종합할 때, ROS생산과 PKC활성화가 상용투석액내 함유된 MGO에 의한 점진적인 복막의 투과성 증가, 세포외기질 축적 그리고 복막 섬유화를 유발하는 주된 신호체계로서 이를 선택적으로 억제함으로써 복막의 기능을 유지할 수 있을 것으로 생각된다.

Keywords

References

  1. Border, W. A. and N. A. Noble. 1994. Transforming growth factor-$\hat{a}$ in tissue fibrosis. N. Engl. J. Med. 333: 1286-1292
  2. Che, W., M. Asahi, M. Takahashi, H. Kaneto, A. Okado, S. Higashiyama, and N. Taniguchi. 1997. Selective induction of heparin-binding epidermal growth factor-like growth factor by methylglyoxal and 3-deoxyglucosone in rat aortic smooth muscle cells. The involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes. J. Biol. Chem. 272: 18453-1845 https://doi.org/10.1074/jbc.272.29.18453
  3. Combet, S., T. Miyata, P. Moulin, D. Pouthier, E. Goffin, and O. Devuyst. 2000. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J. Am. Soc. Nephrol. 11: 717-728
  4. Davies. S. J., L. Phillips, P. F. Naish, and G. I. Russell. 2001. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J. Am. Soc. Nephrol. 12: 1046-1051
  5. Fenton. S. S., D. E. Schaubel, M. Desmeules, H. J. Morrison, Y. Mao, P. Copleston, J. R. Jeffery, and C. M. Kjellstrand. 1997. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am. J. Kidney Dis. 30: 334-342 https://doi.org/10.1016/S0272-6386(97)90276-6
  6. Greenwel, P., J.-A. Dominues-Rosales, G. Mavi, M. Rivas-Estilla, and M. Rojkind. 2000. Hydrogen peroxide: A link between acetaldehyde-elicited ${\alpha}$(I) collagen gene upregulation an oxidative stress in mouse hepatic stellate cells. Hepatology 31: 109-116 https://doi.org/10.1002/hep.510310118
  7. Ha, H. and H. B. Lee. 2002. Peritoneal mesothelial cell biology in peritoneal dialysis. Nephrology 7: 220-226 https://doi.org/10.1046/j.1440-1797.2002.00122.x
  8. Inagi, R., T. Miyata, T. Yamamoto, D. Suzuki, K. Urakami, A. Saito, C. van Ypersele de Strihou, and K. Kurokawa. 1999. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 463: 260-264 https://doi.org/10.1016/S0014-5793(99)01642-7
  9. Lee, H. B., M. R. Yu, J. S. Song, and H. Ha. 2004. ROS amplify PKC signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int. 65: 1170-1174 https://doi.org/10.1111/j.1523-1755.2004.00491.x
  10. Leung, J. C., L. Y. Chan, F. F. Li, S. C. Tang, K. W. Chan, T. M. Chan, M. F. Lam, A. Wieslander, and K. N. Lai. 2005. Glucose degradation products downregulate 20-1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol. Dial. Transplant. 20: 1336-1349 https://doi.org/10.1093/ndt/gfh814
  11. Linden, T., A. Cohen, R. Deppisch, P. Kjellstrand, and A. Wieslander. 2002. 3,4-Dideoxyglucosone-3-ene (3,4-DGE): A cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int. 62: 697-703 https://doi.org/10.1046/j.1523-1755.2002.00490.x
  12. Linden, T., G. Forsback, R. Deppisch, T. Henle, and A. Wieslander. 1998. 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit. Dial. Int. 18: 290-293
  13. Margetts, P. J., M. Kolb, T. Galt, C. M. Hoff, T. R. Shockley, and J. Gauldie. 2001. Gene transfer of transforming growth factor-b1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12: 2029-2039
  14. Mata-Greenwood, E., A. Grobe, S. Kumar, Y. Noskina, and S. M. Black. 2005. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-b1 and reactive oxygen species: a requirement for NADP(H) oxidase. Am. J. Physiol. 289: L288-L298
  15. Moist, L. M., F. K. Port, S. M. Orzol, E. W. Young, T. Ostbye, R. A. Wolfe, T. Hulbert-Shearon, C. A. Jones, and W. E. Bloembergen. 2000. Predictors of loss of residual renal function among new dialysis patients. J. Am. Soc. Nephrol. 11: 556-564
  16. Nilsson-Thorell, C. B., N. Muscalu, A. H. Andren, P. T. Kjellstrand, and A. P. Wieslander. 1993. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit. Dial. Int. 13: 208-213
  17. Rhee, S. G. 1999. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 31: 53-59 https://doi.org/10.1038/emm.1999.9
  18. Stylianou, E., L. A. Jemmer, M. Davies, G. A. Coles, and J. D. Williams. 1990. Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int. 37: 1563-1570 https://doi.org/10.1038/ki.1990.150
  19. Welton, A. G., C. G. Schalkwijk, P. M. ter Wee, S. Meijer, J. van den Bon, and R. J. Beelen. 2003. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and proinflammatory response. Perit. Dial. Int. 23: 213-221
  20. Wieslander, A. P., M. K. Nordin, E. Martinson, P. T. Kjellstrand, and U. C. Boberg. 1993. Heat-sterilized PD fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin. Nephrol. 39: 343-348
  21. Wieslander, A. P., M. K. Nordinn, O. T. Kjellstrand, and U. C. Boberg. 1991. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int. 40: 77-79 https://doi.org/10.1038/ki.1991.182
  22. Williams, J. D., K. J. Craig, N. Topley, C. von Ruhland, M. Fallon, G. R. Newman, R. K.Mackenzie, and G. T. Williams. 2002. Peritoneal Biopsy Study Group: Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13: 470-479
  23. Witoski, J., J. Wisniewska, K. Korybalska, T. O. Bebder, A. Breborowicz, G. M. Gahl, U. Frei, J. Passlick-Deetjen, and A. Jorres. 2001. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J. Am. Soc. Nephrol. 12: 2434-2441
  24. Young, T. A., H. Wang, S. Munk, D. S. Hammoudi, D. S. Young, M. S. Mandelcom, and C. J. Whiteside. 2005. Vascular endothelial growth factor expression and secretion by retinal pigment epithelial cells in high glucose and hypoxia is protein kinase C-dependent. Exp. Eye. Res. 80: 651-662 https://doi.org/10.1016/j.exer.2004.11.015
  25. Zweers, M. M., D. G. Struijk, W. Smit, and R. T. Krediet. 2001. Vascular endothelial growth factor in peritoneal dialysis:a longitudinal follow-up. J. Lab. Clin. Med. 137: 125-132 https://doi.org/10.1067/mlc.2001.112235