Fabrication of 8YSZ-$Al_2O_3$ solid oxide full cell (SOFC) electrolyte by a spark plasma sintering method

방전 플라즈마 소결법을 이용한 8YSZ-$Al_2O_3$ 고체 산화물 연료전지 전해질 제조

  • Kim Jae Kwang (Department of Ceramic Engineering, Hanyang University) ;
  • Choi Bong Geun (Department of Ceramic Engineering, Hanyang University) ;
  • Yang Jae Kyo (Department of Chemical Engineering, Hanyang University) ;
  • Choa Yong Ho (Department of Chemical Engineering, Hanyang University) ;
  • Shim Kwang Bo (Department of Ceramic Engineering, Hanyang University)
  • Published : 2005.02.01

Abstract

In order to improve electrical conductivity and mechanical properties of 8YSZ SOFC electrolyte material, we used Al₂O₃ as an additive and applied the spark plasma sintering (SPS) method. The sintered bodies were densified above 96 % of theoretical density at 1200℃ and possessed microstructures composed of homogeneous grains less than 1 ㎛ in size. The addition of Al₂O₃ improved fracture toughness and bending strength by inhibiting grain growth of 8YSZ and increased total ionic conductivity because grain interior conductivity appeared to remain constant and grain boundary conductivity increased. It was assumed that the dissolution of Al₂O₃ into 8YSZ which was inevitable problem at commercial sintering method was effectively prohibited by the SPS technique with a relatively low sintering temperature and the reaction between Al₂O₃ and SiO₂ present at grain boundary to produce the crystalline Al/sub 2-x/Si/sub l-y/O/sub 5/ phase, resulting in the increase of grain boundary conductivity.

고체 산화물 연료전지 전해질 재료인 8YSZ(yttria stabilized zirconia)세라믹 소재의 전기 전도도와 기계적 특성을 동시에 향상시키기 위하여 첨가제로서 Al₂O₃를 사용하고, 방전 플라즈마 소결법을 적용하였다. 제조된 소결체는 1200℃의 소결 온도에서 96% 이상의 밀도를 보이며, 1 ㎛ 이하의 균일한 크기의 결정립들로 구성된 미세구조를 보여주고 있다. 첨가된 Al₂O₃는 순수한 8YSZ의 결정립성장을 억제하여 파괴인성 및 굽힘강도 등 기계적 물성을 향상시키고, 또한 결정립 내부 전도도는 일정하게 유지한 채, 결정립계 전도도를 향상시켜 전체 이온 전도도를 증가시킴을 확인하였다. 이는 방전플라즈마 소결법이 비교적 낮은 온도에서 소결이 가능하여 기존의 소결 방법에서 문제시 되었던 8YSZ내로 Al₂O₃가 용해되는 것이 억제 되었을 뿐 아니라, 결정립계에 존재하는 SiO₂가 Al₂O₃와 반응하여 Al/sub 2-x/Si/sub l-y/O/sub 5/상으로 결정화되면서 결정립계 전도도를 향상시킨 결과로 사료된다.

Keywords

References

  1. R. Henne, G. Schiller, V. Borck, M. Mueller, M. Lang and R. Ruckdaschel, 'SOFC components production-an interesting challenge for DC- and RF-plasma spraying', In Proc. Of the 15th Int. Thermal spray Conf., France (1998) 933
  2. A.J. McEvoy, 'Thin SOFC electrolytes and their interfaces: A near-term research strategy', Sol. State Ion. 132 (2000) 159
  3. C.C. Chen, M.M. Nasrallah and H.U. Anderson, 'Synthesis and characterization of YSZ thin film electrolytes', Sol. State Ion. 70/71 (1994) 101 https://doi.org/10.1016/0167-2738(94)90293-3
  4. E.C. Subbarao and H.S. Maiti, 'Solid electrolytes with oxygen ion conduction', Sol. State Ion. 11 (1984) 317 https://doi.org/10.1016/0167-2738(84)90024-9
  5. M. Miyayama and H. Yanagida, 'Dependence of grain-boundary resistivity of grain-boundary density in yttria-stabilized zirconia', J. Am. Ceram. Soc. 67 (1984) C194
  6. R. Gerhardt and A.S. Nowick, 'Grain-boundary effect in ceria doped with trivalent cations: electrical measurements', J. Am. Ceram. Soc. 69 (1986) 641
  7. S.P.S. Badwal and S. Rajendran, 'Effect of micro- and nano-structures on the properties of ionic conductors', Sol. State Ion. 70/71 (1994) 83
  8. M.J. Verkerk, A.J.A. Winnubst and A.J. Burggraaf, 'Effect of impurities on sintering and conductivity of yttria-stabilized zirconia', J. Mater. Sci. 17 (1982) 3113
  9. K.C. Radford and R.J. Bratton, 'Zirconia electrolyte cells: Part 2 electrical properties', J. Mater. Sci. 14 (1979) 66 https://doi.org/10.1007/BF01028329
  10. S. Rajendran, J. Drennan and S.P.S. Badwal, 'Effect of alumina additions on the grain boundary and volume resistivity of tetragonal zirconia polycrystals', J. Mater. Sci. Lett. 6 (1987) 1431 https://doi.org/10.1007/BF01689312
  11. A.J. Feighery and J.T.S. Irvine, 'Effect of alumina additions upon electrical properties of 8 mol% yttria-stabilized zirconia', Sol. State Ion. 121 (1999) 209
  12. Mori, T. Abe, H. Ito, O. Yamamoto, Y. Takeda and T. Kawagara, 'Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells', Sol. State Ion. 74 (1994) 157
  13. W.C. Mackrodt and P.M. Woodrow, 'Theoretical estimates of point defect energies in cubic zirconia', J. Am. Ceram. Soc. 69 (1986) 277 https://doi.org/10.1111/j.1151-2916.1986.tb07426.x
  14. J.-H. Lee, T. Mori, J.-G. Li, T. Ikegami, M. Komatsu and H. Haneda, 'Improvement of grain-boundary conductivity of 8 mol% Yttria-stabilized zirconia by precursor scavenging of siliceous phase', J. Electrochem. Soc. 147 (2000) 2822
  15. J. Hong, L. Gao, S.D.D.L. Torre, H. Miyamoto and K. Miyamoto, 'Spark plasma sintering and mechanical properties of $ZrO_2(Y_2O_3)-Al_2O_3$ composites', Mater. Lett. 43 (2000) 27
  16. S.H. Risbud and C.H. Shan, 'Fast consolidation of ceramic powders', Mater. Sci. Eng. A. 204 (1995) 146 https://doi.org/10.1016/0921-5093(95)09951-4
  17. S.H. Shim, K.H. Kim and K.B. Shim, 'Characteristics of grain orientation and grain boundaries of the $ZrB_2-ZrC$ composites densified by spark plasma sintering', J. Kor. Ceram. Soc. 38 (2001) 914
  18. K.H. Kim and K.B. Shim, 'The sintering behavior of $ZrB_2-ZrC$ composites sintered by spark plasma sintering process', J. Kor. Ceram. Soc. 38 (2001) 582
  19. M. Aoki, Y.M. Chinang, I. Kosacki, L.J.R. Jee, H. Tuller and Y. Kiu, 'Solute segregation and grain-boundary impedance in high-purity stabilized zirconia', J. Am. Ceram. Soc. 79 (1996) 1169
  20. A. Nakahira and K. Nihara, 'Sintering behavior and consolidation process for $Al_2O_3/SiC$ nanocomposites'', J. Ceram. Soc. Jpn. 100 (1992) 448 https://doi.org/10.2109/jcersj.100.448
  21. D.B. Marshall and A.G Evans, 'The influence of residual stress on the toughness of reinforced brittle materials', Mater. Forum. 11 (1988) 304
  22. X.J. Chen, K.A. Khor, S.H. Chan and L.G. Yu, 'Over-coming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt% silica-doped yttria-stabilized zirconia (YSZ)', Mater. Sci. Eng. A 374 (2004) 64