DOI QR코드

DOI QR Code

Production of Transgenic Melon from the Cultures of Cotyledonary-Node Explant Using Agrobacterium-Mediated Transformation

Agrobacterium 공동 배양을 통한 자엽절 절편 배양으로부터 멜론 형질전환체 생산

  • Cho Mi-Ae (Eugentech Inc., Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song Yun-Mi (Eugentech Inc., Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park Yun-Ok (Eugentech Inc., Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ko Suck-Min (Eugentech Inc., Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Min Sung-Ran (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Liu Jang-Ryol (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee Jun-Haeng (Department of Medicinal Plant Resources, Nambu University) ;
  • Choi Pil-Son (Department of Medicinal Plant Resources, Nambu University)
  • Published : 2005.12.01

Abstract

Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic melon. Cotyledonary-node explants of melon (Cucumis melo L. cv. Super VIP) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 35S promoter-gus gene as reporter gene and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selective agent, and the binary vector (pPTN290) carrying with Ubiquitin promoter-GUS gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent, respectively. The maximum transformation efficiency (0.12%) was only obtained from the cotyledonary-node explants co-cultivated with EHA101 strain (pPTN289) on selection medium with 5 mg/L glufosinate and not produced a transgenic melon from the cotyledon or cotyledonary-node co-cultivated with other strains. Finally, five plants transformed showed the resistance in glufosinate antibiotic and the GUS positive response in leaf ($T_0$), flower ($T_0$), seeds ($T_1$) and plantlet ($T_1$). Southern blot analysis revealed that the gus gene integrated into each genome of transgenic melon.

Agrobacterium과 자엽절 공동배양으로 대두 형질전환체를 생산하였다. 멜론 (슈피VIP품종)의 자엽절 절편은 선발 마커로서 bar와 reporter로서 gus유전자가 포함된 pPTN289 또는 선발마커로서 nptII유전자와 reporter로서 gus유전자로 제작된 pPTN290벡터를 LBA4401, GV3101, EHA101에 각각 형질전환하여 공동 배양하였다. 최대 형질전환빈도(0.16%)는 EHA101 (pPTN289)균주로 공동배양한 자엽절 절편을 glufosinate가 첨가된 선발배지에서 얻을 수 있었으며, 최종적으로 glufosinate저항성과 잎 ($T_0$), 화기 ($T_0$), 종자 ($T_1$) 및 유식물체 ($T_1$)에서 GUS양성반응을 나타내는 5개체를 얻었다. Southern분석에 의하여 GUS유전자가 멜론 genomic DNA에 도입되어 있음을 확인하였다.

Keywords

References

  1. Bauer N, Levanic DL, Mihaljevic S, Jelaska S (2002) Genetic transformation of Coleus blumei Benth. using Agrobacterium. Food Technol Biotechnol 40: 163-169
  2. Boyhan GJ, Norton D, Jacobsen BJ, Abrahams BR (1992) Evaluation of watermelon and related germplasm for resistance to zucchini yellow mosaic virus. Plant Dis 76: 251-252 https://doi.org/10.1094/PD-76-0251
  3. Cho MA, Choi DW, Liu JR , Clemente T, Choi PS (2004) Development of transgenic soybean using Agrobacterium tumefaciens. Kor J Plant Biotechnol 31: 255-259 https://doi.org/10.5010/JPB.2004.31.4.255
  4. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005a) The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 32: 161-165 https://doi.org/10.5010/JPB.2005.32.3.161
  5. Cho MA, Song YM, Liu JR, Choi PS (2005b) Production of transgenic watermelon by Agrobacterium tumefaciens-mediated transformation. Kor J Plant Biotechnol (submitted)
  6. Choi PS, Soh WY, Cho DY, Liu JR (1994) High frequency somatic embryogenesis and plant regeneration in seedling explant cultures of melon (Cucumis melo L .). Kor J Plant Biotechnol 21: 1-5
  7. Clemente T, LaValle BJ, Howe AR, Ward DC, Rozman RJ, Hunte PE, Broyles DL, Kasten DS, Hinchee MA (2000) progeny analysis of glyphosate selected transgenic soybean derived from Agrobacterium-mediated transformation. Crop Sci 40: 797-803 https://doi.org/10.2135/cropsci2000.403797x
  8. Curuk BS, Cetiner S, Elman C, Xia X, Wang Y, Yeheskel A, Zilberstein L, Perl-Treves R, Watad AA, Gaba V (2005) Transformation of recalcitrant melon (Cucumis melo L.) cultivars is facilitated by wounding with carborundum. Eng Life Sci 5: 169-176 https://doi.org/10.1002/elsc.200520069
  9. Dellaporta SL, Wood J, Hicks JB (1985) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor, New York, pp 36-37
  10. Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35s promoter in transgenic melon. Bio/Tech 9: 858-863 https://doi.org/10.1038/nbt0991-858
  11. Fang G, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9: 160-164
  12. Finer KR, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assited Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol 30: 406-410. https://doi.org/10.1046/j.1472-765x.2000.00737.x
  13. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology-the importance of virus resistance. In Vitro Cell Dev Biol Plant 40: 346-358 https://doi.org/10.1079/IVP2004554
  14. Gray DJ, McColley DW, Compton ME (1993) High frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J Am Soc Hort Sci 118: 425-432
  15. Guis M, Ben Amor M, Latche A, Peche JC, Roustan JP (2000) A reliable method for the transformation of Cantaloupe Charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci Hort 84: 91-99 https://doi.org/10.1016/S0304-4238(99)00101-6
  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: ${\beta}-glucuronidase$ as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
  17. Lee SH, Shon YG, Lee SI, Kim CY, Koo JC , Lim CO, Choi YJ, Han CD, Chung CH, Choe ZR, Cho MJ (1999) Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration. Physiol Plant 107: 338-340 https://doi.org/10.1034/j.1399-3054.1999.100311.x
  18. Meurer CA, Dinkins RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18: 180-186 https://doi.org/10.1007/s002990050553
  19. Muller B, Zumdick A, Schuphan I, Schmidt B (2001) Metabolism of the herbicide glufosinate ammonium in plant cell cultures of transgenic and non-transgenic sugarbeet, carrot, purple foxglove and thorn apple. Pest Manag Sci 57: 46-56 https://doi.org/10.1002/1526-4998(200101)57:1<46::AID-PS256>3.0.CO;2-1
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15 : 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Nishibayashi S, Kayakawa T, Nakajima T, Suzuki M, Kaneko H (1996) CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theor Appl Genet 93: 672-678 https://doi.org/10.1007/BF00224061
  22. Olhoft PM, Somers DA (2001) L-cysteine increase Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20: 706-711 https://doi.org/10.1007/s002990100379
  23. Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136: 167-179 https://doi.org/10.1023/B:EUPH.0000030670.36730.a4
  24. Shelp BJ, Swanton CJ, Hall JC (1992) Glufosinate (phosphinothricin) mobility in young soybean shoots. J Plant Physiol 139: 626-628 https://doi.org/10.1016/S0176-1617(11)80382-2
  25. Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep 19: 485-490 https://doi.org/10.1007/s002990050760
  26. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131: 892-899 https://doi.org/10.1104/pp.102.017681
  27. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  28. Tricoli DM, Carney KJ, Russell PF, Quemada HD, McMaster RJ, Reynolds JF, Deng RZ (2002) Transgenic plants expressing DNA containing a plurality of genes to impart virus resistance. US patent 6,337,431
  29. Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Org Cult 56 : 37-46 https://doi.org/10.1023/A:1006298622969

Cited by

  1. Development of transgenic cucumber expressing TPSP gene and morphological alterations vol.37, pp.1, 2010, https://doi.org/10.5010/JPB.2010.37.1.072
  2. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.341
  3. The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) vol.38, pp.3, 2011, https://doi.org/10.5010/JPB.2011.38.3.198