DOI QR코드

DOI QR Code

Room-temperature Magnetotransport in Degenerately Doped GaAs:(Mn,Be) by Virtue of the Embedded Ferromagnetic Clusters

  • Yu, Fu-Cheng (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ihm, Young-Eon (Department of Materials Science and Engineering, Chungnam National University)
  • Published : 2005.09.01

Abstract

Magnetotransport is a prerequisite to realization of electronic operation of spintronic devices and it would be more useful if realized at room temperature. The effects of Be codoping on GaMnAs on magnetotransport were investigated. Mn flux was varied for growth of precipitated GaMnAs layers under a Be flux for degenerate doping via low-temperature molecular beam epitaxy. Magnetotransport as well as ferromagnetism at room temperature were realized in the precipitated GaAs:(Mn,Be) layers. Codoping of Be was shown to promote formation of MnGa clusters, and annealing process further stabilized the cluster phases. The room-temperature magnetic properties of the layers originate from the ferromagnetic clusters of MnGa and MnAs embedded in GaAs. The degenerately doped metallic GaAs matrix allowed the visualization of the magnetotransport through anomalous Hall effect.

Keywords

References

  1. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999)
  2. A. Shen, Y. Horikoshi, H. Ohno, and S. P. Guo, Appl. Phys. Lett. 71, 1540 (1997)
  3. H. Ohno, Science 281, 951 (1998) https://doi.org/10.1126/science.281.5379.998
  4. A. Shen, F. Matsukura, S. P. Guo, Y. Sugawara, H. Ohno, M. Tani, H. Abe, and H. C. Liu, J. Crystal Growth 201/202, 679 (1999)
  5. H. Ohno, J. Mag. Mag. Mater. 200, 110 (1999)
  6. T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, and Y. Otuka, J. Crystal Growth 175/176, 1063 (1997)
  7. H. Shimizu, T. Hayashi, T. Nishinaga, and M. Tanaka, Appl. Phys. Lett. 74, 398 (1999)
  8. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A.S. van Steenbergen, P. J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B56, 13103 (1997)
  9. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000)
  10. S. U. Yuldashev, H. Im, V. S. Yalishev, C. S. Park, T. W. Kang, S. Lee, Y. Sasaki, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 82, 1206 (2003)
  11. K. M. Yu, W. Walukiewicz, T. Wojtowicz, W. L. Lim, X. Liu, M. Dobrowolska, and J. K. Furdyna, Nucl. Instrum. Methods Phys. Res. B219-220, 636 (2004)
  12. K. H. Kim, K. J. Lee, D. J. Kim, H. J. Kim, Y. E. Ihm, D. Djayaprawira, M. Takahashi, C. S. Kim, C. G. Kim, and S. H. Yoo, Appl. Phys. Lett. 82, 1775 (2003)
  13. K. H. Kim, K. J. Lee, D. J. Kim, H. J. Kim, Y. E. Ihm, C. G. Kim, S. H. Yoo, and C. S. Kim, Appl. Phys. Lett. 82, 4755 (2003)
  14. K. H. Kim, K. J. Lee, D. J. Kim, C. S. Kim, H. C. Lee, C. G. Kim, S. H. Yoo, H. J. Kim, and Y. E. Ihm, J. Appl. Phys. 93, 6793 (2003)
  15. K. H. Kim, J. H. Park, B. D. Kim, C. S. Kim, D. J. Kim, H. J. Kim, and Y. E. Ihm, Metal. Mater. 8, 177 (2002)
  16. AShen, H. Ohno, F. Matsukara, Y. Sugawara, N. Akiba, T. Koroiwa, A. Oiwa, A Ando, S. Katsumoto, and Y. lye, J. Crystal Growth 175/176, 1069 (1997)
  17. P. Specht, M. J. Cich, R. Zhao, J. Gebauer, M. Luysberg, and E. R. Weber, Physica B308-310, 808 (2001)
  18. J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Appl. Phys. Lett. 68, 2744 (1996)
  19. M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, T. L. Cheeks, and V. G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993)
  20. B. D. Cullity in 'Introduction to magnetic materials', pp. 119, Addison-Wesley, 1972
  21. H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, N. Akiba, and T. Kuroiwa, Physica E2, 904 (1998)