DOI QR코드

DOI QR Code

Potential for Novel Magnetic Structures by Nanowire Growth Mechanisms

  • Lapierre R.R. (Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University) ;
  • Plante M.C. (Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University)
  • Published : 2005.09.01

Abstract

GaAs nanowires were grown on GaAs (111)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 25 and 200 nm as the catalytic agents. The growth rate and structure of the nanowires were investigated for substrate temperatures between 500 and $600^{\circ}C$ to study the mass transport mechanisms that drive the growth of these crystals. The possibilities for fabrication of novel magnetic nanostructures by suitable choice of growth conditions are discussed.

Keywords

References

  1. Y W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mat. Sci. Eng. R 47, 1 (2004)
  2. H.-J. Choi, H.-K. Seong, J. Chang, K.-I. Lee, Y.-J Park, J.-J Kim, S.-K. Lee, R. He, T. Kuykendall, and P. Yang, Adv. Mater. 17, 1351 (2005)
  3. J. M. Baik and J.-L. Lee, J. Vac. Sci. Technol. B 23(2), 530 (2005)
  4. Y. Sun, D.-Y. Khang, F. Hua, K. Hurley, R. G. Nuzzo, and J. A. Rogers, Adv. Funct. Mater. 15, 30 (2005)
  5. J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, J. Cryst. Growth 272, 180 (2004)
  6. S. Yoshida, I. Tarnai, T. Sato, and H. Hasegawa, Jpn. J. Appl. Phys. 43, 2064 (2004)
  7. J. C. Hulteen and C. R. Martin, J. Mat. Chem. 7(7), 1075 (1997) https://doi.org/10.1039/a608608j
  8. R. S. Wagner, in: A. P. Levitt (Ed.), Whisker Technology, Wiley Inter-Science, New York (1970) pp. 47-119
  9. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
  10. T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001) https://doi.org/10.1063/1.1328057
  11. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nature Mat. 3, 677 (2004)
  12. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguchi, J. Appl. Phys. 77, 447 (1995)
  13. M. Borgstrom, K. Deppert, and L. Samuelson, J. Cryst. Growth 260, 211 (2004)
  14. V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Y. B. Samsonenko, N. V. Sibirev, and V. M. Ustinov, Phys. Stat. Sol B 241, R30 (2004)
  15. Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Appl. Phys. Lett. 85, 657 (2004) https://doi.org/10.1063/1.1767954
  16. A. I. Persson, B. J. Ohlsson, S. Jeppesen, and L. Samuelson, J. Cryst. Growth 272, 167 (2004)
  17. X. Duan and C. M. Lieber, Adv. Mater. 12, 298 (2000)
  18. V. Gudmundsson, Y.-Y. Lin, C.-S. Tang, V. Moldoveanu, J. H. Bardarson, and A. Manolescu, Phys. Rev. B 71, 235302 (2005)
  19. K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 74, 3162 (1993)
  20. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y Tan, Appl. Phys. Lett. 84(24), 4968 (2004) https://doi.org/10.1063/1.1637949
  21. V. Ruth and J. P. Hirth, J. Chem. Phys. 41(10), 3139 (1964)
  22. V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Y. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 205325 (2005)
  23. S. Bhunia, T. Kawamura, S. Fujikawa, and Y. Watanabe, Physica E 24, 138 (2004)
  24. H. Wang and G. S. Fischman, J. Appl. Phys. 76, 1557 (1994)
  25. L. Sun, Y. Hao, C.-L. Chien, and P. C. Searson, IBM J. Res. Dev. 49(1), 79 (2005)