Microbial Risk Assessment in Treated Wastewater Irrigation on Paddy Rice Plot

하수처리수를 관개한 후 벼재배 시험구에 대한 미생물 위해성 평가

  • Published : 2005.06.30

Abstract

The protection of public health In wastewater reclamation and reuse is one of the most important issues. Monitoring data of Escherichia coli were collected from paddy rice plots in 2003 and 2004 experiments. Five treatments were used and each one was triplicated to evaluate the changes of E. coli: surface water, biofilter effluent (secondary level), UV-disinfected water and pond treatment. Microbial risk was quantified to assess human health risk by exposure to E. coli in paddy rice plots, which were irrigated with reclaimed wastewater. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion that may occur to farmer and neighbor children. Monte-Carlo analysis (10,000 trials) was used to estimate the risk characterization of uncertainty. In the following analysis, two scenarios were related to the reduction of risk against direct ingestion and exposure times. Scenarios A and B were assumed that the risk was 1,000 and 10,000 times lower than direct ingestion.'Golfers were assumed to be 0.001 L of reclaimed water by contact with balls and their cloths. Opportunity of contact in paddy rice field with pathogens was more frequent than handing golf balls, because of agricultural activity was practiced in ponded water in paddy rice culture. As a result of microbial risk assessment using total data of experimental period, risk value of E. coli in 2003 and 2004 experiment ranged from $10^{-5}$ to $10^{-8}$ and $10^{-4}$ to $10^{-8}$, respectively. The risk values in biofilter effluent irrigation was the highest, which is $10^{-4}$ in 2003 and $10^{-5}$ in 2004 experiments with scenario A. Ranges of $10^{-6}$ to $10^{-8}$ were considered at reasonable levels of risk for communicable disease transmission from environmental exposure and the risk value above $10^{-4}$ was considered to be attributable to the risk of infection. Irrigation with UV-disinfected water in the paddy field during the agricultural Period showed significantly lower microbial risk than others, and their levels of risk value were within the range of actual paddy rice field with surface water.

하수처리수는 이용할 수 있는 소중한 수자원이지만, 적절한 정책과 안전하고 효율적인 관리 없이는 이용할 수 없다. 본 연구에서는 국제적인 농업적 재이용수 수질기준을 고찰하고 하수처리수를 논에 관개한 후 E. coli의 농도를 모니터링 하였으며, Beta-Poisson 모형을 이용하여 두개의 시나리오를 바탕으로 미생물 위해성 평가를 실시하였다. 본 연구의 모니터링 결과 biofilter 유출수를 추가 처리 없이 관개한 처리구에서 높은 E. coli농도를 나타내었으며, 처리구와 모니터링 시기별로 큰 차이를 보였는데 이는 관개나 기타 영농작업시 저질이 교란되어 수체의 농도에 반영되고 처리구별 논의 생태 차이가 영향을 미친 것으로 판단된다. 하수처리수를 관개할 경우 Beta-poisson 모형을 이용하여 직접 영농활동에 참여하는 농부와 주변의 아이들에 미치는 위해성에 대해 평가하였다. 미생물 위해성 평가 결과 관개 직후보다 관개 후 24시간이 경과되면 위해도 값이 감소하는 것으로 나타났으며, 관개 후 1 ${\sim}$ 2일이 경과한 후에 작업에 임하는 것이 미생물 위험이 적은 것으로 나타났다. 2003년과 2004년 모두 관개 초기인 5월말과 6월초에 높은 위해도 값을 나타내었다. 본 연구에서 실시한 위해성 평가는 논에 관한 역학자료가 충분하지 않았으며,E. coli를 음용수로 섭취할 경우 발생할 수 있는 질병에 대한 평가 모형을 이용하였기 때문에 하수처리수의 논 관개시 위험을 평가하는데 한계를 갖고 있다. 하지만, 하수처리수를 관개용수로 사용할 경우 병원성 세균에 의한 감염의 개연성을 보여주었으며 하수처리수를 재이용하고자 할 때 추가적인 처리 등의 적절한 관리가 필요함을 시사한다.

Keywords

References

  1. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. APHA, Washington, DC
  2. Asano, T., L.Y.C. Leong, M.G. Rigby and R.H. Sakaji. 1992. Evaluation of the California wastewater reclamation criteria using enteric virus monitoring data. Water Sci. Technol. 26: 1513-1524 https://doi.org/10.1021/es00032a003
  3. Asano, T. and R.H. Sakaji. 1990. Virus risk analysis in wastewater reclamation and reuse. In: Chemical water and wastewater treatment. Hahn, H.H. and Klute, R. (Eds) Spinger-Verlag, Berlin Heidelberg. pp 483-496
  4. Ayres, R.M., R. Stott, D.L. Lee, D.D. Mara and S.A. Silva. 1992. Contamination of lettuces with nematode eggs by spray irrigation with treated and untreated wastewater. Water Sci. Technol. 26: 1615-1623
  5. Hass, C.N., J.B. Rose, C. Gerba and S. Regli. 1993. Risk assessment of virus in dringing water. Risk Analysis 13: 545-552 https://doi.org/10.1111/j.1539-6924.1993.tb00013.x
  6. Hass, C.N., J.B. Rose and C. Gerba. 1999. Quantitative microbial risk assessment. Wiley, New York
  7. Bastos, R.K.X. and D.D. Mara. 1995. The bacteriological quality of salad crops drip and furrow irrigated with waste stabilization pond effluent: an evaluation of the WHO guidelines. Water Sci. Technol. 31: 425-430
  8. Blumenthal, U.J., D.D. Mara, R.M. Ayres, E. Cifuentes, A. Peasey, R. Stott, D.L. Lee and Ruiz-Palacios, G. 1996. Evaluation of the WHO nematode egg guidelines for restricted and unrestricted irrigation. Water Sci. Technol. 33: 277-283
  9. Camann, D.E. and B.E. Moore. 1988. Viral infections based on clinical sampling at a spray irrigation site. In: Implementing water reuse. AWWA Research Foundation 847
  10. Camann, D.E., M.N. Graham, H.J. Guentzel, H.J. Harding, T.L. Kimball, B.E. Moore, R.L. Northrop, N.L. Altman, O.R.B. Harrist, A.H. Holguin, R.L. Mason, P.C. Becker and C.A. Sorber. 1986. Project Summary. The Lubbock land treatment system research and demonstration project: Volume IV. Lubbock Infection Surveillance Study (LISS) USEPA/600/S2-86/027d. United States Environmental Protection Agency, North Carolina
  11. Chapra, S.C. 1997. Surface water-quality modeling. McGraw-Hill. New-York
  12. Chung, Q.Y. 2003. A study on the coliforms removal methods at wastewater treatment plants. Master's Program in Department of Agricultural resources and Environmental Engineering Graduate School of Agriculture & Animal Science KonKuk University
  13. Cifuentes, E. 1998. The epidemiology of enteric infections in agricultural communities exposed to wastewater irrigation: perspectives for risk control. International J. Environ. Sci. Health Res. 8: 203-213 https://doi.org/10.1080/09603129873480
  14. Kwun, S.K., C.G. Yoon and I.M. Chung. 2001. Feasibility study of treated sewage irrigation on paddy rice culture. J. Envir. Sci. Health A 36: 807-818 https://doi.org/10.1081/ESE-100103762
  15. Jung, K.W., C.G. Yoon, H.S. Hwang and J.H. Ham. 2003. Disinfection and reactivation of microorganisms after UV irradiation for agricultural water reuse of biofilter effluent. J. of KSWQ. 45: 94-106
  16. Ministry of Environment (M.O.E.). 2003. The Water Quality Reports of Wastewater Treatment Plant
  17. Marples, R.R. and A.G. Towers. 1979. A laboratory model for the investigation of contact transfer of microorganisms. J. Hygiene 82:237-248 https://doi.org/10.1017/S0022172400025651
  18. Peasey, A., U. Blumenthal. D. Mara. D. and G. Ruiz- Palacios. 2000. A review of policy and standards for wastewater reuse in agriculture: a Lain American perspective, Task No: 68 Part 2: 15-18
  19. Shuval, H., Y. Lampert and B. Fattal. 1997. Development of a risk assessment approach for evaluation wastewater reuse standards for agriculture. Water Sci. Technol. 35: 15-20
  20. Tanaka, H., T. Asano and G. Tchobanoglous. 1993. Estimating the reliability of wastewater reclamation and reuse using enteric virus monitoring data. Water Environment Federation 66th Annual Conference and Exposition, Anaheim, California, USA. October 3-7, 1993
  21. Tanaka, H., T. Asano, E.D. Schroeder and G. Tchobanoglous. 1998. Estimating the safety of wastewater reclamation and reuse using enteric virus monitoring data. Water Envir. Res. 70: 39-51 https://doi.org/10.2175/106143098X126874
  22. Tchobanoglous, G., F. Loge, J. Darby and M. Devries. 1996. UV disign: Comparison of probabilistic and deterministic design approaches. Water Sci. Technol. 33: 251- 260
  23. Thomann, R.V. and J.A. Mueller. 1987. Principles of Surface water quality modeling and control. Harper & Row, New York
  24. USEPA. 1992. Manual, Guidelines for water reuse. USEPA/ 625/R-92/004. US Agency international development. http://www.epa.gov. Assessed 9 Aug. 2004
  25. WHO. 2000. Guidelines for the microbiological quality of treated wastewater used in agriculture recommendations for revising WHO guidelines: Special Theme- Environment and Health
  26. Yoon, C.G., K.W. Jung, J.H. Ham and J.H. Jeon. 2003. Feasibility study of natural systems for sewage treatment and agricultural reuse. J. of KSAE. 45: 194-206