Quality Characteristics of Dried Squid(Todarodes Pacificus) by Warm Air Drying

온풍건조방법에 의한 마른 오징어의 품질특성

  • Joon-Hee Park (Department of Food Engineering, Sangju National Univerity, Sangju) ;
  • Joo-Heon Hong (DG-Technology Agency, Traditional Bio-Materials Industry Center, Daegu) ;
  • Won-Young Lee (Department of Food Engineering, Sangju National Univerity, Sangju)
  • 박준희 (상주대학교 식품공학과) ;
  • 홍주헌 (대구신기술사업단 전통생물소재산업화센터) ;
  • 이원영 (상주대학교 식품공학과)
  • Published : 2005.10.01

Abstract

To replace the traditional drying method with improving the qualities of dried squid, warm air drying method was investigated comparing with natural drying method. In respect of drying rate, about 12 hrs were taken to obtain 25% moisture content -which was considered as proper moisture content to control microbial and quality degradation- by warm air drying at 35$^{\circ}C$. However, 120 hrs were taken to obtain such moisture content by natural drying. The squid dried by warm air showed little color difference and was seemed to be raw squid meat color. TBA values were more rapidly increased but final values were lower, inversely. Free amino acid contents were higher, and cholesterol content was lower in warm air drying.

본 연구에서는 마른 오징어의 품질 향상을 위해서 일반적으로 많이 사용되고 있는 천일 건조와 온풍건조 방법을 이용하여 건조조건에 따른 마른 오징어의 건조특성 및 이화학적 품질 특성을 분석하였다. 건조방법에 따른 건조완료 마른오징어의 건조시간, 수분함량 및 수분활성도는 온풍건조의 경우 온도가 증가함에 따라 건조시간은 줄어들었고 천일건조의 경우에는 총 120시간만에 건조가 완료되었으며 수분활성도는 미생물의 생육과 증식이 불가능한 0.468~0.486을 나타내었다. 마른오징어의 $\Delta$Ε 값은 같은 온풍건조 30$^{\circ}C$를 제외하고 차이가 적어 육안으로는 큰 차이를 느끼지 못하였다. 건조 방법 및 시간에 따른 TBA가는 차이를 보여 건조 완료 마른오징어의 경우 35℃ 온풍건조가 가장 높게 나타났다. 오징어의 맛을 내는 아미노산인 proline, alanine, glycine과 taurine은 온풍건조 35$^{\circ}C$에서 가장 높았으며 천일건조의 경우 생오징어와 유사한 조성비를 가지고 있었지만 유리 아미노산의 양은 감소한 것으로 나타났다. 천일건조와 온풍건조를 비교하면 총 지방산의 함량은 천일건조가 많은 것으로 나타났으며, 콜레스테롤 함량은 생오징어가 707.8 mg/100 g, 천일건조는 522.3 mg/100 g, 온풍건조는 평균 511.4 mg/100 g로 나타나 건조 오징어의 콜레스테롤 함량이 감소하는 경향이었다.

Keywords

References

  1. Stansby, M. E. (1976) Fish oils in nutrition. New York, USA, p.6-39
  2. Okutani, K. (1976) An antitumor substance obtained from the internal shell of squid- Isolation procedures and antitumor activity. Bull. Jap. Soc. sci. Fish, 42, 449-453 https://doi.org/10.2331/suisan.42.449
  3. Lee, N.H., Oh, S.W. and Kim, Y.M. (1996) Biochemical changes in muscle protein of squid sikhae during fermentation - Effects of temperature and moisture content. Korean J. Food Sci. Technol., 28, 292-297
  4. Shimomura, M.. Shimosaka, C. and Matsumoto, J. J. (1992) Changes in texture and proteins of squid meat cured in sake lees. Nippon shokuhin Kogyo Gakkaishi, 39, 418-424 https://doi.org/10.3136/nskkk1962.39.418
  5. Yang, S.Y. and Lee, N.H. (1994) Dried fish products. Korea Food Research Institute Bulletin, 7, 126-130
  6. Tsai, C.H., Pan, B.S. and Kong, M.S. (1991) Browning behavior of taurine and proline in model and dried squid system. J. Food Biochem., 15, 67-77 https://doi.org/10.1111/j.1745-4514.1991.tb00144.x
  7. Kim, M.H. (1990) Effects of preteatments prior to conventional dehydration of dried prouct Quality. J. Biochem. Eng., 4, 30-37
  8. Labelle, R.L. and Moyer, J.C. (1996) Dehydrofreezing red tart cherries. Food Technol., 20, 1345-1351
  9. Edward, S.D. and Pauline, E.M. (1963) Comparison of beta-carotene content of dried carrots prepared by thee dehydration processes. Food Technol., 19, 1597-1601
  10. Karel, M., Fennema, O.R. and Lund, D.B. (1978) Physical principles of food preservation, Marcel Dekker, Boston, U.S.A., p.255-328
  11. Choi, H.Y., Kim, M.N. and Lee, K.G. (1973) Non-enzymatic browning reactions in dried squid stored at different water activities (in Korea). Bull. Korea Fish Soc., 6, 97-100
  12. Terashita, T., Kitamoto, Y., Matsumoto, T., Hosoi, N., Ichikawa, Y. and Kono, M. (1984) Nitrogen metabolism in favolus arcularius and changes in composition of free and protein amino acids during development of the mycelium and fruiting bodies. Transaction of the Mycological Society of Japan, 25, 187-198
  13. A.O.A.C. (1984) The Official Methods of Analysis, 14th ed., The Association of official analysis chemists, Inc., Virginia, USA p.362
  14. Tarladgis, B.G., Watts B.M. and Younathan M.J. (1960) Distillation method for the quantitative determination of malonaldehyde in rancid. J. Am., Oil Chem., Soc., 58, 44-48
  15. Lee, I.S., Park, S.Y., Lee, J.H. and Sung, N.J. (1997) Oxidized cholesterols in dried Alaska Pollacks. Korean J. Food Sci. Technol., 26, 822-826
  16. 국립수산물검역소 (1986) 수산물 검사자료, p. 6-10
  17. Youn, K.S. and Choi, Y.H. (1990) Adsorption characteristics and moisture content prediction model of coffee with water activity and temperature. Korean J. Food Sci. Technol., 3, 690-695
  18. Han, B.H., Choi, S.I., Lee, J.G., Bae, T.J. and Park, H.G. (1982) Dehydration mechanism and water activity of filefish muscle. Korean J. Food Sci. Technol., 2, 342-349
  19. Fukuda, M. and Ishida. M. (1954) Study for artificial drying of squid. Bull. Fac. Fish. Hokkaido Univ., 4, 337-343
  20. Hur J.W. (1982) Studies on the drying methods of sea foods. 1. Fixed bed drying of squid. Bull. Korean Fish Soc., 15, 107-110
  21. Yang, S.Y. and Oh, S.W. (1999) Color changes of dried squid differs in packaging films during storage. Korean J. Food Sci. Technol., 31, 1289-1294
  22. Tanaka, M., Chiba, N., Ishizaki, S., Takai, R. and Taguchi, T. (1994) Influence of water activity and maillard reaction on the polymerization of myosin Heavy Chain in freeze-dried squid meat. Fish Sci., 60, 607-611
  23. Tsai, C., Pan, B.s. and Kong M.S. (1991) Browning behavior of taurine and proline in model and dried squid systems. J. Food Biochem., 15, 67-73 https://doi.org/10.1111/j.1745-4514.1991.tb00144.x
  24. Yang C.Y. (1999) Manufacturing conditions and quality of dried meat on the snow crab. Korean J. Food & Nutr., 12, 258-264
  25. Cho, S.T. (2000) Change of taurine content in squid meat during squid processing and taurine content in the squid processing waste water. J. Korea. Soc., Food Nutr., 33, 51-54
  26. Kyoichi, O., Takehiro, Satoshi, N., Koji, T. and Michihiro, S. (1995) Oxidized cholesterol modulates age-related change in lipid metabolism in rats. Lipids, 30, 405-413 https://doi.org/10.1007/BF02536298