Simple Sequence Repeat (SSR) and GC Distribution in the Arabidopsis thaliana Genome

  • Mortimer Jennifer C (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Department of Plant Sciences, University of Cambridge) ;
  • Batley Jacqueline (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ;
  • Love Christopher G (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ;
  • Logan Erica (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ;
  • Edwards David (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)
  • 발행 : 2005.03.01

초록

We have mined each of the five A. thaliana chromosomes for the presence of simple sequence repeats (SSRs) and developed custom perl scripts to examine their distribution and abundance in relation to genomic position, local G/C content and location within and around transcribed sequences. The distribution of repeats and G/C content with respect to genomic regions (exons, UTRs, introns, intergenic regions and proximity to expressed genes) are shown. SSRs show a non-random distribution across the genome and a strong association within and around transcribed sequences, while G/C density is associated specifically with the coding portions of transcribed sequences. SSR motif repeat number shows a high degree of variation for each SSR type and a high degree of motif sequence bias reflecting local genome sequence composition. PCR primers suitable for the amplification of identified SSRs have been designed where possible, and are available for further studies.

키워드

참고문헌

  1. Abajian C (1994) SPUTNIK
  2. Arhondakis S, Auletta F, Torelli G, D'Onofrio G (2004) Base composition and expression level of human genes. Gene 325: 165-169 https://doi.org/10.1016/j.gene.2003.10.009
  3. Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contracting mating systems. Mol Biol Evol 14: 1023-1034 https://doi.org/10.1093/oxfordjournals.molbev.a025708
  4. Barakat A, Han DT, Benslimane AA, Rode A, Bernadi G (1999) The gene distribution in the genomes of pea, tomato and date palm. FEBS Lett 463: 139-142 https://doi.org/10.1016/S0014-5793(99)01587-2
  5. Borstnik B, Pumpernik D (2002) Tandem repeats in protein coding regions of primate genes. Genome Res 12: 909-915 https://doi.org/10.1101/gr.138802
  6. Brandes A, Thompson H, Dean C, Heslop-Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238-246 https://doi.org/10.1023/A:1018415502795
  7. Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 1: 2242-2251 https://doi.org/10.1101/gr.1416703
  8. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998-1006 https://doi.org/10.1007/BF00224530
  9. Holland JB, Hellend SJ, Sharopova N, Rhyne DC (2001) Polymorphism of PCR based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44: 1065-1076 https://doi.org/10.1139/gen-44-6-1065
  10. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501-510 https://doi.org/10.1023/A:1014875206165
  11. Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13: 74-78 https://doi.org/10.1016/S0168-9525(97)01008-1
  12. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161-1167 https://doi.org/10.1093/oxfordjournals.molbev.a003903
  13. Khashnobish A, Hamann A, Osiewacz HD (1999) Modulation of gene expression by (CA)(n) microsatellites in the filamentous ascomycete Podospora anserina. Applied Microbiol Biotech 52: 191-195 https://doi.org/10.1007/s002530051508
  14. Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453-2465 https://doi.org/10.1046/j.1365-294X.2002.01643.x
  15. Lowenhaupt KY, Rich A, Pardue ML (1989) Nonrandom distribution of long mono-nucleotide and dinucleotide repeats in Drosophila chromosomes - correlations with dosage compensation, heterochromatin and recombination. Mol Cell Biol 9: 1173-1182 https://doi.org/10.1128/MCB.9.3.1173
  16. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30: 194-200 https://doi.org/10.1038/ng822
  17. Moxon ER, Wills C (1999) DNA Microsatellites: Agents of Evolution. Sci Am 280: 94-99 https://doi.org/10.1038/scientificamerican0199-94
  18. Nanda I, Zischler H, Epplen C, Gutlenbach M, Schmid M (1991) Chromosomal organisation of simple repeated DNA Sequences used for DNA fingerprinting. Electrophoresis 12: 193-203 https://doi.org/10.1002/elps.1150120216
  19. Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (DCDA)N.(DG-DT)N sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6: 1781-1789
  20. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215-222 https://doi.org/10.1016/1360-1385(96)86898-1
  21. Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17: 415-425 https://doi.org/10.1046/j.1365-313X.1999.00392.x
  22. Robinson AJ, Love CG, Batley J, Barker G, Edwards 0 (2004) Simple sequence repeat marker loci discovery using SSRPrimer. Bioinformatics (In Press) https://doi.org/10.1093/bioinformatics/bth104
  23. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol 20: 1143-1157 https://doi.org/10.1093/molbev/msg137
  24. Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organisation of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761-8765 https://doi.org/10.1073/pnas.93.16.8761
  25. Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Nucleic Acids Res 20: 211-215 https://doi.org/10.1093/nar/20.2.211
  26. Schlctlerer C, Pemberton J (1994) The use of microsatellites for genetic analysis of natural populations. In: Scheirwater B, Streit B, Wagner GP, DeSalie R, (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag Basel, Switzerland, pp 71-86
  27. Sreenu VB, Alevoor V, Nagaraju J, Nagarajaram HA (2003) MICdb: database of prokaryotic microsatellites. Nucleic Acids Res 31: 106-108 https://doi.org/10.1093/nar/gkg002
  28. Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: R13 https://doi.org/10.1186/gb-2003-4-2-r13
  29. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463-6471 https://doi.org/10.1093/nar/17.16.6463
  30. Tautz D, Renz M (1984) Simple sequences as ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127-4138 https://doi.org/10.1093/nar/12.10.4127
  31. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 https://doi.org/10.1038/35048692
  32. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 10: 967-981 https://doi.org/10.1101/gr.10.7.967
  33. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silica analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7: 537-546
  34. Weber JL (1990) Informativeness of human $(DC-DA)_n. (DG-DT)_n$ polymorph isms. Genomics 7: 524-530 https://doi.org/10.1016/0888-7543(90)90195-Z
  35. Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24: 396-399 https://doi.org/10.1038/74238