DOI QR코드

DOI QR Code

Smart geophysical characterization of particulate materials in a laboratory

  • Kwon, Tae-Hyuk (Department of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Department of Civil and Environmental Engineering, KAIST)
  • Received : 2004.07.29
  • Accepted : 2005.04.15
  • Published : 2005.04.25

Abstract

Elastic and electromagnetic waves can be used to gather important information about particulate materials. To facilitate smart geophysical characterization of particulate materials, their fundamental properties are discussed and experimental procedures are presented for both elastic and electromagnetic waves. The first application is related to the characterization of particulate materials using shear waves, concentrating on changes in effective stress during consolidation, multi-phase phenomena with relation to capillarity, and microscale characteristics of particles. The second application involves electromagnetic waves, focusing on stratigraphy detection in layered soils, estimation of void ratio and its spatial distribution, and conduction in unsaturated soils. Experimental results suggest that shear waves allow studying particle contact phenomena and the evolution of interparticle forces, while electromagnetic waves give insight into the characteristics of the fluid phase and its spatial distribution.

Keywords

Acknowledgement

Supported by : KOSEF

References

  1. Barrett, P. J. (1980), "The shape of rock particles, a critical review", Sedimentology, 27, 291-303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.x
  2. Cho, G. C. (2001), Unsaturated soil stiffness and post-liquefaction shear strength, Ph.D. Thesis, Georgia Institute of Technology, 288.
  3. Cho, G. C. and Santamarina, J. C. (2001), "Unsaturated particulate materials - Particle-level study", J. Geotech. Geoenviron. Eng., ASCE, 127(1), 84-96. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(84)
  4. Cho, G. C., Lee, J. S., and Santamarina, J. C. (2004), "Spatial variability in soils: high resolution assessment with electrical needle probe", J. Geotech. Geoenviron. Eng., ASCE, 130(8), August, 843-850. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(843)
  5. Desrues, J., Chambon, R., Mokni, M., and Mazerolle, F. (1996), "Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography", Geotechnique, 46(3), 529-546. https://doi.org/10.1680/geot.1996.46.3.529
  6. Dobry, R. and Petrakis, E. (1990), "Micromechanical modeling to predict sand densification by cyclic straining", J. Eng. Mech., ASCE, 116(2), 288-308. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(288)
  7. Fenton, G. A. and Griffiths, D. V. (1996), "Stochastics of free surface flow through stochastic earth dam", J. Geotech. Eng., 122(6), 427-436. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(427)
  8. Fredlund, D. G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils. Wiley Inter-Science, New York, 517.
  9. Frossard, E. (1979), "Effect of sand grain shape on interparticle friction: indirect measurements by Rowe's stress dilatancy theory", Geotechnique, 29(3), 341-350. https://doi.org/10.1680/geot.1979.29.3.341
  10. Griffiths, D. V. and Fenton, G. A. (1993), "Seepage beneath water retaining structures founded on spatially random soil", Geotechnique, 43(4), 577-587. https://doi.org/10.1680/geot.1993.43.4.577
  11. Heyman, J. (1997), Coulomb's Memoir on Statics, An Essay in the History of Civil Engineering, Imperial College Press, p. 212.
  12. Jang, D.-J., Frost, J. D., and Park, J. Y. (1999), "Preparation of epoxy impregnated sand coupons for image analysis", Geotech. Testing J., GTJODJ, 22(2), 147-158.
  13. Krumbein, W. C. and Sloss, L. L. (1963), Stratigraphy and Sedimentation, Second Edition, W. H. Freeman and Company, San Francisco, 660.
  14. Kuo, C.-Y., Frost, J. D., Lai, J. S., and Wang, L. B. (1996), "Three-dimensional image analysis of aggregate particle from orthogonal projections", Transportation Research Record, 1526, 98-103. https://doi.org/10.3141/1526-12
  15. Mitchell, J. K., Chatoian, J. M., and Carpenter, G. C. (1976), The influences of sand fabric on liquefaction behavior, Report No. TE 76-1, U.S. Army Engineer Waterways Experiment Station, University of California, Berkeley.
  16. Mulilis, J. P., Seed, H. B., Chan, C. K., Mitchell, J. K., and Arulanandan, K. (1977), "Effects of sample preparation on sand liquefaction", J. Geotech. Eng., 103(GT2), 91-108.
  17. Paice, G. M., Griffiths, D. V., and Fenton, G. A. (1996), "Finite element modeling of settlements on spatially random soil", J. Geotech. Eng., ASCE, 122(9), 777-779. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(777)
  18. Pennington, D. S., Nash, D. F. T., and Lings, M. L. (1997), "Anisotropy of shear stiffness in Gault clay", Geotechnique, 47(3), 391-398. https://doi.org/10.1680/geot.1997.47.3.391
  19. Popescu, R. and Prevost, J. H. (1996), "Influence of spatial variability of soil properties on seismically induced soil liquefaction", Uncertainty in the Geological Environment: from theory to practice, Proceedings of Uncertainty '96, edited by Schackelford et al., Geotechnical Special Publication 58(2), 1098-1112.
  20. Popescu, R., Prevost, J. H., and Deodatis, G. (1997), "Effects of spatial variability on soil liquefaction: some design recommendations", Geotechnique, 47(5), 1019-1036. https://doi.org/10.1680/geot.1997.47.5.1019
  21. Powers, M. C. (1953), "A new roundness scale for sedimentary particles, J. Sedimentary Petrology, 23(2), 117-119.
  22. Roscoe, K. H., Schofield, A. N., and Wroth, C. P. (1958), "On the yielding of soils", Geotechnique, 8, 22-53. https://doi.org/10.1680/geot.1958.8.1.22
  23. Santamarina, J. C. and Cho, G. C. (2004), "Soil behaviour: the role of particle shape", The Skempton Memorial Conference, Thomas Telford, 1, 604-617.
  24. Santamarina, J. C. and Cascante, G. (1998), "Effect of surface roughness on wave propagation parameters", Geotechnique, 48(1), 129-136. https://doi.org/10.1680/geot.1998.48.1.129
  25. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley and Sons, LTD, 488.
  26. Santamarina, J. C., Rinaldi, V. A., Fratta, D., Klein, K., Wang, Y. H., Cho, G. C., and Cascante, G. (2004), The properties of near-surface soils in relation to elastic and electromagnetic wave parameters, Chapter in Physical properties of near-surface materials, in print.
  27. Schofield, A. N. (1998), "Don't use the C word," Ground Engineering, August, 30-32.
  28. Schofield, A. N. and Wroth, P. (1968), Critical State Soil Mechanics, McGraw-Hill Book Company, 310.
  29. Stokoe, K. H., II, Lee, J. N.-K. and Lee, S. H.-H. (1991), "Characterization of soil in calibration chambers with seismic waves", Proceedings of 1st International Symposium on Calibration Chamber Testing, Elsevier, Potsdam, New York, 363-376.
  30. Tonon, F., Bernardini, A., and Mammino, A. (2000), "Reliability analysis of rock mass response by means of random set theory", Reliability Engineering and System Safety, 70(3).
  31. Wadel, H. (1932), "Volume, shape, and roundness of rock particles", J. Geology, 40, 443-451. https://doi.org/10.1086/623964
  32. Yimsiri, S. and Soga, K. (1999), "Effect of surface roughness on small-strain modulus: micromechanics view", Pre-failure Deformation Characteristics of Geomaterials: Proceedings, 2nd International Symposium, Torino, Italy; edited by M. Jamiolkowski, R. Lancellotta, and D. Lo Presti, 597-602.
  33. Yong, R. N., Alonso, E., and Tabba, M. M. (1977), "Application of risk analysis to the prediction of slope stability", Canadian Geotech. J., 14, 540-553. https://doi.org/10.1139/t77-055
  34. Yudhbir, and Abedinzadeh, R. (1991), "Quantification of particle shape and angularity using the image analyzer", Geotechnical Testing J., GTJODJ, 14(3), 296-308. https://doi.org/10.1520/GTJ10574J

Cited by

  1. Evaluation of subsurface spatial variability in site characterization based on RCPTU data vol.75, pp.1, 2016, https://doi.org/10.1007/s10064-015-0727-8
  2. Analysis of laboratory data on ultrasonic monitoring of permeability reduction due to biopolymer formation in unconsolidated granular media vol.64, pp.2, 2016, https://doi.org/10.1111/1365-2478.12295
  3. Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method vol.29, pp.3, 2013, https://doi.org/10.7843/kgs.2013.29.3.51
  4. Slime thickness evaluation of bored piles by electrical resistivity probe vol.108, 2014, https://doi.org/10.1016/j.jappgeo.2014.07.004
  5. Effect of Moisture Content and Particle Size on Extinction Coefficients of Soils Using Terahertz Time-Domain Spectroscopy vol.7, pp.5, 2017, https://doi.org/10.1109/TTHZ.2017.2731369
  6. Characterisation of subsurface spatial variability using a cone resistivity penetrometer vol.31, pp.7, 2011, https://doi.org/10.1016/j.soildyn.2011.03.012
  7. Performance-Based Evaluation of a Double-Deck Tunnel and Design Optimization vol.11, pp.1, 2019, https://doi.org/10.3390/su11010201
  8. Evaluation of preconsolidation stress by shear wave velocity vol.7, pp.4, 2011, https://doi.org/10.12989/sss.2011.7.4.275
  9. An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity vol.7, pp.4, 2005, https://doi.org/10.12989/sss.2011.7.4.289
  10. 온도보상형 전기저항 프로브의 현장 적용성 평가 vol.31, pp.c4, 2005, https://doi.org/10.12652/ksce.2011.31.4c.117
  11. Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles vol.16, pp.3, 2005, https://doi.org/10.12989/gae.2018.16.3.321