Reaction Kinetics for the Synthesis of Oligomeric Poly (lactic acid)

  • Yoo Dong Keun (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim Dukjoon (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University) ;
  • Lee Doo Sung (Department of Polymer Engineering, Polymer Technology Institute, Sungkyunkwan University)
  • Published : 2005.02.01

Abstract

A low-molecular-weight poly(lactic acid) was synthesized through the condensation reaction of L-lactic acid. The effects that the catalyst and temperature have on the reaction rate were studied to determine the optimum reaction conditions. The reaction kinetics increased with temperature up to $210^{\circ}C$, but no further increase was observed above this temperature. Among a few selective catalysts, sulfuric acid was the most effective because it maximized the polymerization reaction rate. Reduction of the pressure was another important factor that enhanced this reactions kinetics.

References

  1. P. Mainilvarlet, R. Rahm, and S. Gogolewski, Biomaterials, 18, 257 (1997) https://doi.org/10.1016/S0142-9612(96)00126-3
  2. W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. T. Brinke, Macromolecules, 23, 634 (1990) https://doi.org/10.1021/ma00204a041
  3. G. L. Dorough, US Pat. 1995970 (1935)
  4. M. Ajoika, K. Enomoto, K. Suzuki, and A. Yamaguchi, J. Environ. Polym. Degrad., 3, 225 (1995) https://doi.org/10.1007/BF02068677
  5. M. Ajoika, K. Enomoto, K. Suzuki, and A. Yamaguchi, Bull. Chem. Soc. Jpn., 68, 2125 (1995) https://doi.org/10.1246/bcsj.68.2125
  6. R. F. Storey, J. S. Wiggen, and A. D. Puckett, J. Polym. Sci.; Part A: Polym. Chem., 32, 2345 (1994) https://doi.org/10.1002/pola.1994.080321216
  7. B. Buchholz, US Pat. 5302694 (1994)
  8. P. V. Bonsignore, US Pat. 5470944 (1995)
  9. H. Inata and S. Mastumura, J. Appl. Polym. Sci., 30, 3325 (1985) https://doi.org/10.1002/app.1985.070300309
  10. S. M. Aharoni and T. Largman, US Pat. 4417031 (1983)
  11. K. Enomoto, US Pat. 5310865 (1994)
  12. E. M. Filachione and C. H. Fisher, Ind. Eng. Chem., 36, 223 (1944) https://doi.org/10.1021/ie50411a009
  13. K. Hiltunen and J. V. Seppala, J. Appl. Polym. Sci., 67, 1011 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1011::AID-APP7>3.0.CO;2-L
  14. J. W. Leenslag and A. J. Pennings, Macromol. Chem., 188, 1809 (1978)
  15. F. E. Kohn, J. W. A. Van Den Berg, V. D. Ridder, and J. Feijen, J. Appl. Polym. Sci., 29, 4265 (1984) https://doi.org/10.1002/app.1984.070291255
  16. H. R. Kricheldorf and S. R. Lee, Polymer, 36, 2995 (1995) https://doi.org/10.1016/0032-3861(95)94350-3
  17. G. I. Shim, J. H. Kim, S. H. Kim, and Y. H. Kim, Korea Polym. J., 5, 19 (1997)
  18. K. Hiltunen, J. V. Seppala, and M. Harkonen, Macromolecules, 30, 373 (1997) https://doi.org/10.1021/ma960919w
  19. S. H. Hyon, K. Jamshidi, and Y. Ikada, Biomaterials, 18, 22, 1503 (1997) https://doi.org/10.1016/S0142-9612(97)00076-8
  20. J. L. Espartero, I. Rashkov, S. M. Li, N. Manolova, and M. Vert, Macromolecules, 29, 3535 (1996) https://doi.org/10.1021/ma950529u