Effects of Dimethyl-sulfoxide on Sperm Cryopreservation of Grass Carp (Ctenopharyngodon idellus)

  • Dang Tuyet Mai (Faculty of Applied Marine Science, Cheju National University, Fish Genetic and Selection Department, Research Institute for Aquaculture) ;
  • Pham Minh Anh (Faculty of Applied Marine Science, Cheju National University, Fish Genetic and Selection Department, Research Institute for Aquaculture) ;
  • Pham Anh Tuan (Fish Genetic and Selection Department, Research Institute for Aquaculture) ;
  • Lee Kyeong-Jun (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2006.02.25

Abstract

This study was conducted to investigate the effects of three different concentrations (6%, 8% and 10% final volume) of dimethyl sulfoxide (DMSO) on cryopreserved sperm of grass carp (Ctenopharyngodon idellus). Grass carp sperm was suspended in Kurokura extender #2 and equilibrated at $4^{\circ}C$ for 10 min. French straws (0.25 ml) of sperm were frozen from $4^{\circ}C\;to\;-4^{\circ}C$ at a rate of $4^{\circ}C\;min^{-1}$ and then ken $-4^{\circ}C\;to\;-80^{\circ}C$ at a rate of $11^{\circ}C\;min^{-1}$. The straws were kept at $-80^{\circ}C$ for 10 min and finally stored in liquid nitrogen $(-196^{\circ}C)$. The cryopreserved sperm was thawed in a water bath at $40^{\circ}C$ for 30 sec and fertilization, hatching rate and larval malformation were compared with fresh sperm (control). The fertilization rate of post-thawed sperm was comparable (from 88.21% to 94.30%) to that of fresh sperm. However, hatching rate of all frozen sperm were significantly lower (P<0.05) than that of control. Additionally, the larval abnormality rate of frozen sperm was significantly higher than that of fresh sperm. The results indicate that DMSO could affect the quality of cryopreserved sperm of grass carp, and a freezing program and a proper extender composition should be further studied.

Keywords

References

  1. Alvarez, B., R. Fuentes, R. Pimentel, Z. Abad, E. Cabrera, E. Pimentel and A. Arenal, 2003. High fry production rates using post-thaw silver carp (Hypophthalmichthys molitrix) spermatozoa under farming conditions. Aquaculture, 220, 195-201 https://doi.org/10.1016/S0044-8486(02)00356-3
  2. Babiak, I., J. Glogowski, E. Brzuska, J. Szumiec and J. Adamek, 1997. Cryopreservation of sperm of common carp, Cyprinus carpio L. Aquacult. Res., 28, 567-571 https://doi.org/10.1111/j.1365-2109.1997.tb01075.x
  3. Bart, A.N. and R.A. Dunham, 1996. Effects of sperm concentration and egg number on fertilization efficiency with channel catfish (Ictalurus punctatus) eggs and blue catfish (I. furcatus) spermatozoa. Theriogenology, 45, 673-682 https://doi.org/10.1016/0093-691X(95)00413-3
  4. Basavaraja, A. and S.N. Hedge, 2004. Cryopreservation of endangered mahseer (Tor khudree) spermatozoa: I. Effect of extender composition, cryoprotectants, dilution ratio, and storage period on post-thaw viability. Cryobiology, 49, 149-156 https://doi.org/10.1016/j.cryobiol.2004.05.007
  5. Billiard, R., J. Cosson, G. Perchec and O. Linhart, 1995. Biology of sperm and artificial reproduction in carp. Aquaculture, 129, 95-112 https://doi.org/10.1016/0044-8486(94)00231-C
  6. Gwo, J.-C., K. Strawn, M.T. Longnecker and C.R. Arnold, 1991. Cryopreservation of Atlantic croaker spermatozoa. Aquaculture, 94, 355-375 https://doi.org/10.1016/0044-8486(91)90179-B
  7. Gwo, J.-C., 1993. Cryopreservation of black grouper (Epinephelus malabaricus) spermatozoa. Theriogenology, 39, 1331-1342 https://doi.org/10.1016/0093-691X(93)90235-W
  8. Harvey, B., 1983. Cryopreservation of Sarotherodon mossambicus spermatozoa. Aquaculture, 32, 313-320 https://doi.org/10.1016/0044-8486(83)90228-4
  9. He, S. and C. Woods III, 2004. Changes in motility, ultrastructure, and fertilization capacity of striped bass Morone saxatilis spermatozoa following cryopreservation. Aquaculture, 236, 677-686 https://doi.org/10.1016/j.aquaculture.2004.02.029
  10. Horvarth, A., E, Miskolczi and B. Urbanyi, 2003. Cryopreservation of common carp sperm. Aquat. Living Resour., 16, 457-460 https://doi.org/10.1016/S0990-7440(03)00084-6
  11. Julia, K., K. Eugeny, Z. Tiantian, M.R. David and V.H. William, 2004. Effect of DNA repair inhibitor (3-aminobenzamide) on genetic stability of loach (Misgurnus fossilis) embryos derived from cryopreserved sperm. Theriogenology, 61, 1661-1673 https://doi.org/10.1016/j.theriogenology.2003.09.010
  12. Kurokura, H., R. Hirano, M. Tomita and M. Iwahashi, 1984. Cryopreservation of carp sperm. Aquaculture, 37, 267-273 https://doi.org/10.1016/0044-8486(84)90159-5
  13. Kusuda, S., N. Koide, H. Kawamula, T. Teranishi, J.-I. Nakajima, E. Yamaha, K. Arai and H. Ohta, 2005. Cryopreservation diluents for spermatozoa of Sakhalin taimen Hucho perryi. Fish. Science, 71, 293-298 https://doi.org/10.1111/j.1444-2906.2005.00963.x
  14. Lahnsteiner F., B. Berger and T. Weismann, 2003. Effects of media, fertilization technique, extender, straw volume, and sperm to egg ratio on hatchability of cyprinid embryos, using cryopreserved semen. Theriogenology, 60, 829-841 https://doi.org/10.1016/S0093-691X(02)01300-6
  15. Lahnsteiner, F., B. Berger, A. Horvath and B. Urbanyi, 2004. Studies on the semen biology and sperm cryopreservation in the sterlet Acipenser ruthenus L. Aquacult. Res., 35, 519-528 https://doi.org/10.1111/j.1365-2109.2004.01034.x
  16. Leung, L. K.-P., 1987, Cryopreservation of spermatozoa of the barramundi, Lates calcarifer (Teleostei: Centropomidae). Aquaculture, 64, 243-247 https://doi.org/10.1016/0044-8486(87)90329-2
  17. Linhart, O., 1991. Evaluation of the sperm and the activation and fecundity of eggs. Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic, pp. 1-12
  18. Linhart, O., M. Rodina and J. Cosson, 2000. Cryopreservation of sperm in common carp Cyprinus carpio: sperm motility and hatching success of embryos. Cryobiology, 41, 241-250 https://doi.org/10.1006/cryo.2000.2284
  19. Lubzens, E., N. Daube, I. Pekasky, Y. Magnus, A. Cohen, F. Yusefovich and F. Feigin, 1997. Carp (Cyprinus carpio) spermatozoa cryobanks-strategies in research and application. Aquaculture, 155, 13-30 https://doi.org/10.1016/S0044-8486(97)00106-3
  20. Miskolczi, E., S. Mihalffy, E. P. Varkonyi, B. Urbanyi and A. Horvath, 2005. Examination of larval malformation in African catfish Clarias gariepinus following fertilization with cryopreserved sperm. Aquaculture, 247, 119-125 https://doi.org/10.1016/j.aquaculture.2005.02.043
  21. Rideout, R. M., K. M. Litvak and A. E. Trippel, 2003. The development of a sperm cryopreservation protocol for winter flounder Pseudopleuronectes americanus (Walbaum): evaluation of cryoprotectants and diluents. Aquacult. Res., 34, 653-659 https://doi.org/10.1046/j.1365-2109.2003.00879.x
  22. Rurangwa, E., D.E. Kime, F. Ollevier and J. P. Nash, 2004. The measurement of sperm motility and factors sperm quality in cultured fish. Aquaculture, 234, 1-28 https://doi.org/10.1016/j.aquaculture.2003.12.006
  23. Strussmann, C. A., H. Nakatsugawa, F. Takashima, M. Hasobe, T. Suzuki and R. Takai, 1999. Cryopreservation of isolated fish blastomeres: Effects of cell stage, cryoprotectants concentration, and cooling rate on postthawing survival. Cryobiology, 46, 252-261
  24. Styen, G. J. and J. H. J. Vuren, 1987. The fertilizing capacity of cryopreserved of sharptooth catfish (Clarias gariepinus) spermatozoa. Aquaculture, 63, 187-193 https://doi.org/10.1016/0044-8486(87)90070-6
  25. Viveiros, A. T. M., N. So and J. Komen, 2000, Sperm cryopreservation of African catfish Clarias gariepinus: cryoprotectants, freezing rates and sperm: egg dilution ratio. Theriogenology, 54, 1395-1408 https://doi.org/10.1016/S0093-691X(00)00462-3
  26. Zhang, Y. Z., S. C. Zhang, X. Z. Liu, Y. Y. Xu, C. L. Wang, M. S. Sawant, J. Li and S. L. Chen, 2003. Cryopreservation of flounder (Paralichthys olivaceus) sperm with a practical methodology. Theriogenology, 60, 989-996 https://doi.org/10.1016/S0093-691X(03)00097-9
  27. Warnecke, D. and H.-J. Pluta, 2003. Motility and fertilizing of frozen/ thawed common carp (Cyprinus carpio L.) sperm using dimethyl-acetamide as main cryoprotectant. Aquaculture, 215, 167-185 https://doi.org/10.1016/S0044-8486(02)00371-X