The Effect of Polyphenols from Safflower Seed on HMG-CoA Reductase (HMGR) Activity, LDL Oxidation and Apo A1 Secretion

홍화씨 폴리페놀이 HMG-CoA reductase, LDL 산화 및 Apo A1 분비에 미치는 영향

  • Cho, Sung-Hee (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Park, Young-Yi (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Yoon, Ji-Young (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Ha, Tae-Youl (Food Function Research Division, Korea Food Research Institute)
  • 조성희 (대구가톨릭대학교 식품영양학과) ;
  • 박영이 (대구가톨릭대학교 식품영양학과) ;
  • 윤지영 (대구가톨릭대학교 식품영양학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과) ;
  • 하태열 (한국식품연구원 식품기능연구본부)
  • Published : 2006.04.01

Abstract

This study was conducted to examine the effect of polyphenols from safflower seed on HMG-CoA reductase (HMGR) activity, LDL oxidation and Apo A1 secretion from Hep3B cell. The safflower seed polyphenols were matairesinol (Iignan), enterolactone (lignan metabolite), acacetin (flavone) and serotonin derivative. In addition to safflower polyphenols, mevastatin, ${\alpha}-estradiol,\;{\alpha}-tocopherol$ and soy genistein were tested as reference compounds depending on the type of the test. HMGR source was liver microsome obtained from rat fed 2% cholestyramine for 10 days. Inhibition of HMGR activity was greater with mevastatin (53%) than safflower serotonin derivatives (45%), followed by genistein (35%), but was very small with matairesinol, enterolactone and acacetin. LDL oxidation induced by $CuSO_4$ was suppressed by all the test material used in the present study and in the order of safflower serotonin derivatives> matairesinol > ${\beta}-estradiol$ > genistein > acacetin > enterolactone. Apo A1 secretion from Hep3B cell was significantly stimulated by mevastatin, but moderately (p<0.1) by ${\beta}-estradiol$ and genistein as well as enterolactone. These results suggest that the safflower polyphenols improve body lipid status via inhibition of cholesterol synthesis and suppression of LDL oxidation.

홍화씨의 폴리페놀 성분들이 HMGR 활성, LDL-oxidation과 Hep3B 세포로부터의 Apo A1 분비능에 미치는 영향을 조사하였다. 홍화씨 성분은 matairesinol(lignan), acacetin(flavone) 및 N-feruloylserotonin과 matairesinol의 대사산물인 enterolactone을 사용하였다. 그 결과, HMCR 저해활성은 mevastatin이 53%로 가장 높은 활성을 나타내었고 다음은 홍화씨 serotronin 유도체인 N-feruloylserotonin이 45%의 저해활성을 보여 홍화씨 폴리페놀 중에서는 가장 높은 활성을 보였으며 genistein은 35%의 활성을 보인 반면 나머지는 활성이 거의 미미하였다. N-feruloylserotonin의 활성은 용량 의존적 반응을 나타내었다. LDL 산화 억제효과는 사용한 모든 홍화씨 폴리페놀성분에서 나타났는데, 특히 N-feruloylserotonin에서 가장 강한 활성을 보였고 역시 용량 의존적 반응을 보였다. Hep3B에서의 Apo A1 분비능은 mevastatin에서 가장 높았고 enterolactone, genistein 및 ${\beta}-estradiol$에서 분비 증강활성을 나타내었다. 이상의 결과들로 미루어 볼 때, 홍화씨 폴리페놀 성분들은 콜레스테를 생합성과 LDL의 산화를 억제시킴으로서 지질대사 및 동맥경화 개선에 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Kang GH, Chang EJ, Choi SW. Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorious L.) seeds. J. Food Sci. Nutr. 4: 221-225 (1999)
  2. Kim HJ, Bae YC, Park RW, Choi SW, Cho SH, Choi YS, Lee WJ. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif. Tissue Int. 71: 88-94 (2002) https://doi.org/10.1007/s00223-001-1080-4
  3. Cho SH, Choi SW, Choi Y, Lee WJ. Effects of defatted safflower and perilla seed powders on lipid metabolism in ovariectomized female rats fed high cholesterol diets. J. Korean Soc. Food Sci. Nutr. 30: 112-118 (2001)
  4. Cho SH, Lee HR. Kim TH. Choi SW, Lee WJ, Choi Y. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high cholesterol diets. J. Nutr. Sci. Vitaminol. 50: 32-37 (2004) https://doi.org/10.3177/jnsv.50.32
  5. Cho SH, Lee HR, Choi SW, Lee WJ, Choi Y. Formulated product containing safflower seed extract improves lipid status of ovariectomized rats. Korean J. Gerentol. 15: 39-46 (2005)
  6. Ha TY, Cho IJ, Lee SH. Screening of HMG-CoA reductase inhibitory activity of ethanol and methanol extracts from cereals and legumes. Korean J. Food Sci. Technol 30: 224-229 (1998)
  7. Cho SH, Jung SE, Lee HK. Ha TY.. Effects of methanol extract of prosomillet on cholesterol and fatty acid metabolism in rat. J. Food Sci. Nutr. 3: 188-192 (1999)
  8. Moon KD, Back SS, Kim JH, Jeon SM, Lee MK, Choi MS. Safflower seed extract lowers plasma and hepatic lipids in rats fed high-cholesterol diet. Nutr. Res. 21: 895-904 (2001) https://doi.org/10.1016/S0271-5317(01)00293-7
  9. von Echardstein A, Assemann G. Prevention of coronary heart disease by rasing high-density lipoprotein cholesterol. Curr. Opin. Lipidol. 11: 627-637 (2000) https://doi.org/10.1097/00041433-200012000-00010
  10. Segreat J, Li L, Ananthatamaiah GM. Harvey SC, Liadaki KN, Zannis V. Structure and function of apolipoprotein A-l and high-density lipoprotein. Curr. Opin. Lipidol. 11: 105-115 (2000) https://doi.org/10.1097/00041433-200004000-00002
  11. Fungwe TV, Kudchodkar BJ, Lacko AG, Dory L. Fatty acids modulate lecithin:cholesterol acyltransferase secretion independent of effects on triglyceride secretion in primary rat hepatocytes. J. Nutr. 128: 1270-1275 (1998)
  12. Hendriks HF, Veenstra J, van Tol A, Greener JF. Schaafsma G. Moderate doses of alcoholic beverage with diner and post-prandial high density lipoprotein composition. Alcohol 33: 403-410 (1998)
  13. Lamon-Fava S. High-density lipoprotein: Effects of alcohol, estrogen and phytoestrogens. Nutr. Rev. 60: 1-7 (2002) https://doi.org/10.1301/002966402760240372
  14. Bonn V, Cheung RC, Chen B. Taghibiglou C. van Iderstine SC, Adeli K. Simvastatin, an HMG-CoA reductase inhibitor, induces the synthesis and secretion of apolipoprotein Al in HepG2 cells and primary hamster hepatocytes. Atherosclerosis 163: 59-68 (2002) https://doi.org/10.1016/S0021-9150(01)00754-7
  15. Tam SP, Archer YK, Deeley RG. Effects of estrogen on apolipoprotein secretion by the human hepatocarcinoma cell line, HepG2. J. Biol. Chem. 260: 1670-1675 (1985)
  16. Jin FY, Kamanna VS, Kashyap ML. Estradiol stimulates apolipoprotein A-I but not A-II containing particle synthesis and secretion by stimulating mRNA trascription rate in HepG2 cells. Arterioscle. Thromb. Vasc. Biol. 18: 999-1006 (1998) https://doi.org/10.1161/01.ATV.18.6.999
  17. Lamon-Fava S. Genestein activates apolipoprotein A-I gene expression in human hepatoma cell line HepG2. J. Nutr. 130: 2489-2492 (2000) https://doi.org/10.1093/jn/130.10.2489
  18. Witzum JL. The role of monocytes and oxidized LDL in atherosclerosis. vol 21, pp. 59-69. In: Atherosclerosis Reviews. Leaf A, Weber PC (eds). Raven Press, New York, USA (1990)
  19. Rotheneder M, Puhl H, Waeg G. Striegl G. Esterbauer H. Effect of oral supplementation with D-a-tocopherol on the vitamin E content of human low density lipoprotein and resistance to oxidation. J. Lipid Res. 32: 1325-1332 (1991)
  20. Meng Q, Lewis P, Wahala K, Adlercreutz H, Tikkanen. Incorporation of esterified soybean isoflavone with antioxidant activity into low density lipoprotein. Biochim. Biophys. Acta. 1438: 369-376 (1999) https://doi.org/10.1016/S1388-1981(99)00062-1
  21. Klensek DA, Dugan RE, Baker TA, Porter JW. 3-Hydroxy-3-methylglutaryl coenzyme A reductase from rat liver. Methods Enzymol. 71: 462-79 (1981) https://doi.org/10.1016/0076-6879(81)71057-7
  22. Shapiro DJ, Nordstrom JL, Mitschele JJ, Rodwell VW. Schimke RT. Micro assay for 3-hydroxy-3-methylglutaryl CoA reductase in rat liver and in L-cell fibroblasts. Biochim. Biophys. Acta. 370: 369-377 (1974) https://doi.org/10.1016/0005-2744(74)90098-9
  23. Hirano R, Kondo K, Iwamoto T, Igarashi O, Itakura H. Effects of antioxidants on the oxidative susceptibility of low-density lipoprotein. J. Nutr. Sci. Vitaminol. 43: 435-444 (1997) https://doi.org/10.3177/jnsv.43.435
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  25. Chen CY, Milbury PE, Kwak HK, Collins FW, Samuel P, Blumber JB. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 134: 1459-1466 (2004)
  26. Balasubashini M, Rukkumani R, Viswanathan P, Menon VP. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother. Res. 18: 310-314 (2000) https://doi.org/10.1002/ptr.1440
  27. Kamal-Eldin A, Fran J, Razdan A, Tengbad S, Basu S, Vessby B. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rat. Lipids 35: 427-435 (2000) https://doi.org/10.1007/s11745-000-541-y
  28. Kim HK, Jeong TS, Lee MK, Park YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica. Chimica. Acta. 327: 129-137 (2003) https://doi.org/10.1016/S0009-8981(02)00344-3
  29. Setchell KD. Adlercreutz H. Mammalian lignans and phytoestrogens. Recent studies on their formation, metabolism, and biological role in health and disease. pp, 315-345. In: Role of the Gut Flora in Toxicity and Cancer. Rowland I (ed). Academic Press, London, England (1988)
  30. Horner NK, Kristal AR, Prunty J, Skor HE, Potter JD, Lampe JW. Dietary determinant of plasma enterolactone. Cancer Epidemiol. Biomarkers Prev. 11: 121-126 (2002)
  31. Kilkkinen A. Valsta LM. Virtamo J, Stumpf K, Adlercreutz H, Pietinen P. Intake of lignans is associated with werum enterolactone concentration in Finnish men and women. J. Nutr. 133: 1830-1833 (2003)
  32. Ndong-Akoume MY, Mignault D, Perwaiz S, Plaa GL, Yousef IM. Simultaneous evaluation of HMG-CoA reductase and cholesterol $7{\alpha}$-hydroxylase activites oy electrospray tandem MS. Lipids 37: 1101-1107 (2002) https://doi.org/10.1007/s11745-002-1006-z