DOI QR코드

DOI QR Code

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation

과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용

  • Seo, Geun-Young (Dept. of Food Science and Nutrition, Soonchunhyang University) ;
  • Park, Hyo-Jin (Dept. of Food Science and Nutrition, Soonchunhyang University) ;
  • Jang, Sung-Geun (Dept. of Chemistry, Soonchunhyang University) ;
  • Park, Young-Hyun (Dept. of Food Science and Nutrition, Soonchunhyang University)
  • 서근영 (순천향대학교 식품영양학과) ;
  • 박효진 (순천향대학교 식품영양학과) ;
  • 장성근 (순천향대학교 화학과) ;
  • 박영현 (순천향대학교 식품영양학과)
  • Published : 2006.08.30

Abstract

Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

과잉 철은 폐경기 여성 및 핀란드 남성에서의 심혈관계질환 증가와 예방통계학적으로 밀접한 관련이 있다고 보고되고 있다. 허혈성 심장질환, 뇌 심혈관계 질환, 암 및 노화의 원인으로 산화적 스트레스가 자유기 반응을 자극하고 지질 과산화 반응 등을 연쇄적으로 촉진시키는데 철이 위험 인자로 인식되고 있다. 그러나 뇌심혈관계 질환 유발의 중요인자인 혈소판 활성화와 관련하여 철로 인한 산화적 스트레스와 항산화작용의 연구는 부족하다고 한다. 산화적 스트레스에서 철 및 과산화수소의 자유기 형성과 관련하여 토끼 혈액에서 분리한 세정 혈소판을 사용하여 연구하였다. 산화적 스트레스를 통해 혈소판 응집을 유도하고 이에 미치는 영향을 연구한 결과에서 $H_2O_2$ 단독 투여시 혈소판 응집작용은 나타나지 않았다. $FeSO_4$ 단독 투여시 농도 의존적으로 혈소판 응집작용이 증가하여 나타내지만, $H_2O_2$ 존재 하에 $FeSO_4$ 투여시 농도 의존적으로 혈소판 응집작용이 증가되어 나타났다. 혈소판 응집을 유도하는 collagen 최적의 농도$(2\;{\mu}g/mL)$보다 낮은 1/10 농도$(2\;{\mu}g/mL)$)에서 $H_2O_2$$FeSO_4$의 영향은 농도 의존적으로 혈소판 응집작용이 증가되었다. 철 단독 투여시보다 과산화수소와 함께 투여시 농도 의존적으로 혈소판 활성화가 증대되었고 이러한 혈소판 활성화는 NAD/NADP, catalase, glutathione, mannitol, tiron 등에 의해 농도 의존적으로 억제되었고, NADH/NADPH, SOD, aspirin 등에 의해서는 영향이 없었다. 그러므로, 이러한 NAD(H)/NADP(H) cofactor는 혈소판 응집작용을 일으키는 radical을 직접 억제하기보다 radical 생성에 관련하는 것으로 사료된다. 이상의 결과에서 과잉철은 혈소판 활성화에 직접적으로 관여하고 $H_2O_2$ 존재하에 2가 철을 촉매로 하여 Fenton 반응으로 생성된 OH. 자유기가 혈소판 활성화에 중요한 역할을 한다. 그러나 혈소판에서 자유기가 arachidonic acid 대사의 활성화와 인산화 단백질로 인한 세포내 정보전달에 관한 연구가 더 이루어져야 한다고 사료된다.

Keywords

References

  1. Lee JM, Park HJ. 2005. Effects of supplementary diet in iron status and development in infants. J Kor Nutr 38: 226-231
  2. Jun YS, Choi MK, Kim AJ, Kim MH, Sung CJ. 2002. Effect of iron supplementation in mineral utilization in rats. J Korean Soc Food Sci Nutr 31: 658-663 https://doi.org/10.3746/jkfn.2002.31.4.658
  3. Kim SK, Park J, Kim MK. 2004. Effect of dietary iron levels on lipid metabolism, antioxidative and antithrombogenic capacities in 16-month-old Rats. J Kor Nutr 37: 273-280
  4. Hwang EH, Kim IS, Lee HJ. 2000. The role of vitamin C and vitamin E supplementation on iron contents and biomarkers of oxidative stress in blood, liver and brain of aging rats. J Kor Nutr 33: 507-516
  5. Day SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S, Fay WP. 2003. Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombmsis. Circulation 107: 2601-2606
  6. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. 1992. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86: 803-811 https://doi.org/10.1161/01.CIR.86.3.803
  7. Henderson LM, Chappel JB. 1996. Article NADPH oxidase of neutrophils. Biochim Biophys Acta 1273: 87-107 https://doi.org/10.1016/0005-2728(95)00140-9
  8. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. 2002. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32: 1185-1196 https://doi.org/10.1016/S0891-5849(02)00815-8
  9. Petra PR, Essilakari KO, Kinnula VL. 2000. Expression of antioxidant enzymes in human inflammatory cells. Am J Physiol Cell Physiol 278: C118-C125 https://doi.org/10.1152/ajpcell.2000.278.1.C118
  10. Iuliano L, Colavita AR, Leo R, Pratico D, Violi F. 1997. Oxygen free racicals and platelet activation. Free Radic Biol Med 22: 999-1006 https://doi.org/10.1016/S0891-5849(96)00488-1
  11. Pratico D, Pasin M, Barry OP, Ghiselli A, Sabatino G, Iuliano L, FitzGerald GA, Violi F. 1999. Iron-dependent human platelet activation and hydroxy radical formation involvement of protein kinase C. Circulation 99: 3118-3124 https://doi.org/10.1161/01.CIR.99.24.3118
  12. Caccese D, Pratico D, Ghiselli A, Natoli S, Pignatelli P, Sangui V, Iuliano L, Violi F. 2000. Superoxide anion and hydroxyl radical release by collagen-induced platelet ag-gregation-role of arachidonic acid metabolism. Thromb Haemost 83: 485-490 https://doi.org/10.1055/s-0037-1613841
  13. Clutton P, Miermont A, Freedman JE. 2004. Regulation of endogenous reactive oxygen species in platelets can reverse aggregation. Arterioscler Thromb Vasc Biol 24: 187-192 https://doi.org/10.1161/01.ATV.0000105889.29687.CC
  14. Mirabelli F, Salis A, Vairetti M, Bellomo G, Thor H, Orrenius S. 1989. Cytoskeletal alterations in human platelets exposed to oxidative stress are mediated by oxidative and $Ca_{2+}$ dependent mechanism. Arch Biochem Biophys 270: 478-488 https://doi.org/10.1016/0003-9861(89)90529-8
  15. Jang MJ, Kang MH, Park YH. 2005. Anti-platelet aggregating effect of solvent extracts from Korean soybean varieties and isoflabone derivatives. J Korean Soc Food Sci Nutr 34: 1320-1324 https://doi.org/10.3746/jkfn.2005.34.9.1320
  16. Born GV, Cross MJ. 1963. The aggregation of blood platelet. J Physiol 168: 178-195 https://doi.org/10.1113/jphysiol.1963.sp007185
  17. Seno T, Inoue N, Gao D, Okuda M, Sumi Y, Matsui K, Yamada S, Hirata K, Kawashima S, Tawa R, Imajoh-Ohmi S, Sakurai H, Yokoyama M. 2001. Involvement of NADH/ NADPH oxydase in human platelet ROS production. Thromb Res 103: 339-409
  18. Iuliano L, Mauriello NM, Sbarigia E, Spagnoli LG, Violi F. 2000. Radiolabeles native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque. Circulation 101: 1249- 1254 https://doi.org/10.1161/01.CIR.101.11.1249
  19. Chao TS, Byron KL, Lee KM, Villereal M, Rosner MR. 1992. Activation of MAP kinase by calcium-dependent and calcium independent pathways. Stimulation by thapsigargin and epidermal growth factor. J Biol Chem 267: 19876- 19883
  20. Blache D, Durand P, Prost M, Loreau N. 2002. (+)-Catechin inhibits platelet hyperativity induced by an acute iron in vivo. Free Radic Biol Med 33: 1670-1680 https://doi.org/10.1016/S0891-5849(02)01139-5
  21. Son DJ, Cho MR, Jin YR, Kim SY, Park YH, Lee SH, Akiba S, Sato T, Yun YP. 2004. Antiplatelet effect of green tea catechin: a possible mechanism through arachidonic acid pathway. Prostaglandins Leukot Essent Fatty Acids 71: 25-31 https://doi.org/10.1016/j.plefa.2003.12.004
  22. Pignatelli P, Lenti L, Sanguigni V, Frati G, Simeoni P, Gazzaniga P, Pulcinelli FM, Violo F. 2003. Carnitine inhibits arachidonic acid turnover, platelet function, and oxidative stress. Am J Physiol Heart Circ Physiol 284: H41-H48 https://doi.org/10.1152/ajpheart.00249.2002