Effects of Benincasa hispida Fractions on Hepatic Lipid Levels and Lipid Peroxidation in Streptozotocin Induced Diabetic Rats

동과 (Benincasa hispida) 분획물의 투여가 Streptozotocin 유발 당뇨 흰쥐의 간장 지질수준 및 지질과산화에 미치는 영향

  • Lim, Sook-Ja (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University) ;
  • Lee, Min-Hwan (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University)
  • 임숙자 (덕성여자대학교 자연과학대학 식품영양학과) ;
  • 이민환 (덕성여자대학교 자연과학대학 식품영양학과)
  • Published : 2006.09.01

Abstract

The effects of fractions of ethanol extract of Benincasa hispida (wax gourd) on lipid levels and lipid peroxidation in streptozotocin (STZ) induced diabetic rats were examined. Sprague-Dawley rats were induced diabetes mellitus by STZ injection (45 mg/kg) into the tail vein and were divided into 5 groups: normal, STZ-control, three experimental diabetic groups [chloroform $(CHCl_3)$ fraction group, butanol (BuOH) fraction group, and water fraction group]. Fractions of ethanol extract of Benincasa hispida were administered orally into the diabetic rats for 14 days. The liver glycogen levels of $CHCl_3$ fraction group and the muscle glycogen levels of BuOH and water fraction groups were significantly higher than that of STZ-control group. Pancreas protein levels of BuOH and water fraction groups were significantly higher than that of STZ-control group. The liver cholesterol level of BuOH and water fraction groups were significantly lower when compared with the STZ-control group. The level of liver triglyceride in BuOH and water fraction groups were significantly higher than that of STZ-control group. Malondialdehyde (MDA) levels in liver of normal and diabetic groups were not significantly different. In the pancreas, the MDA levels of BuOH and water fraction group were significantly lower than that of STZ-control group. The results suggested that the supplementation of the BuOH and water fractions of Benincasa hispida extract could be beneficial for the diabetic complications and damages from the lipid peroxidation.

한국산 식용 및 야생식물의 항당뇨 효능에 대한 연구의 일환으로 본 연구에서는 동과의 ethanol 추출물을 계통분획하여 streptozotocin으로 당뇨를 유발시킨 흰쥐에게 14일간 경구투여한 후 조직의 글리코겐 함량, 단백질 함량, 지질함량 및 지질과산화에 미치는 영향을 비교 분석하여 다음과 같은 결과를 얻었다. 장기무게를 체중 100 g당 환산하였을 때 당뇨쥐의 간장, 신장 및 폐의 무게가 정상쥐에 비해 증가함을 확인할 수 있었고 췌장의 무게는 $CHCl_3$ 분획물 투여군이 당뇨대조군에 비해 유의적으로 높은 수치를 보였다. 간장의 글리코겐 함량은 정상군에 비해 모든 당뇨유발군에서 유의적으로 낮은 함량을 나타냈으며 $CHCl_3$ 분획물 투여군에서 증가되었으나 유의적인 차이는 보이지 않았다. 근육의 글리코겐 함량은 BuOH 분획물 투여군과 water 분획물 투여군에서 당뇨대조군에 비해 유의적으로 높은 함량을 나타내었다. 간장과 신장의 단백질 함량은 정상군과 모든 당뇨유발군 사이에 유의적인 차이를 보이지 않았고, 폐의 단백질 함량은 $CHCl_3$ 분획물 투여군을 제외한 모든 당뇨실험군이 당뇨대조군에 비해 낮은 수준을 나타내었다. 췌장의 단백질 함량은 BuOH 분획물 투여군과 water 분획물 투여군이 당뇨대조군보다도 유의적으로 높게 나타났다. 간장 콜레스테롤 함량은 당뇨대조군에 비해 BuOH 분획물 투여군과 water 분획물 투여군에서 유의적으로 낮은 수준을 보였고, 간장의 중성지방 함량은 당뇨대조군에 비해 BuOH 분획물 투여군과 water 분획물 투여군 유의적으로 높게 나타났다. 간장과 폐의 malondialdehyde (MDA) 힘량은 모든 당뇨유발군에서 높게 나타났으며 신장에서는 BuOH 분획물 투여군과 water 분획물 투여군에서 높게 나타났다. 췌장의 MDA함량은 BuOH 분획물 투여군과 water 분획물 투여군이 정상군보다도 낮은 수준이었다. 이상의 연구결과 STZ 유발 당뇨 흰쥐에게 동과의 BuOH 분획물과 water 분획물을 투여하였을 때 근육의 글리코겐 함량 증가, 간장의 콜레스테롤 감소 및 췌장의 지질과산화 억제에 효과가 있었으나 간장과 신장의 지질과산화를 감소시키는 효과는 없는 것으로 나타났다.

Keywords

References

  1. Shin CS, Lee HK, Koh CS, Kim YI, Shin YS, Yoo KY, Paik HY, Park YS, Yang BG. Risk factors for the development of NIDDM in Yonchon Country, Korea. Diabetes Care 20: 1842-1846, 1997 https://doi.org/10.2337/diacare.20.12.1842
  2. Abrams JJ, Ginberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in non-ketotic diabetes mellitus. Diabetes 31: 903-910, 1982 https://doi.org/10.2337/diabetes.31.10.903
  3. Min HK, Yoo HJ, Lee HK, Kim EJ. Changing patterns of the prevalence of diabetes mellitus in Korea. Diabetes 6(1): 1-4, 1981
  4. Sato Y, Hotta N, Sukamoto N, Natenoka S, Ohishi N, Yagi N. Lipid peroxide level in plasma of diabetic patients. Biochem Med 21: 104-110, 1979 https://doi.org/10.1016/0006-2944(79)90061-9
  5. Schrarer CD, Adler AI, Mayer AM, Haldeson KR, Trimble BA. Diabetes complications and mortality among Alaska natives: 8 years of observation. Diabetes Care 20: 314-321, 1997 https://doi.org/10.2337/diacare.20.3.314
  6. Wada K, Miki H, Etoh M, Okuda F, Kumada T, Kusukawa R. The inhibitory effect of lipid peroxides on the activity of the membrane bound and the solubilized lipoprotein lipase. Jpn Clin J 47: 837-842, 1983
  7. Morel DW, Chisolm GM. Antioxidative treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 30: 1827-1834, 1989
  8. Lalla E, Lamster IB, Drury S, Fu C, Schmidt AM. Hyperglycemia, glycoxidation and receptor for advanced glycation endproducts: potential mechanism underlying diabetic complications, including diabetes-associated periodontitis. Periodontol 23(1): 50-62, 2000 https://doi.org/10.1034/j.1600-0757.2000.2230104.x
  9. Lee WS. Vegetables of Korea. Kyunpook National Univ. press, Daegu, pp.186-188, 1994
  10. Huh J. The Handbook of oriental medicine. Namsandang, p.1170, 1994
  11. Warier PK. Indian medicinal plants. Orient Longman Limited, India, pp.261, 1994
  12. Sharma LK. Food medicines. Practical nature cure. Natural Cure Publishing House, Pudukkottai, India, p.169, 1984
  13. Grover JK, Adiga G, Vats V, Athi SS. Extracts of Benincasa hispida prevent development of experimental ulcers. J Ethnopharmacology 78: 159-164, 2001 https://doi.org/10.1016/S0378-8741(01)00334-8
  14. Lim SJ, Lee MH. Effects of fractions of Benincasa hispida on plasma levels of glucose and lipid in streptozotocin induced diabetic rats. Korean J Nutrition 38(10): 801-806, 2005
  15. Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127: 838-841, 1997 https://doi.org/10.1093/jn/127.5.838S
  16. Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic actions of streptozotocin. Cancer Chemother Rep 29: 91-98, 1963
  17. Junod A, Lambert AE, Stauffacher W, Renod AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48: 2129-2139, 1969 https://doi.org/10.1172/JCI106180
  18. Wilson GL. Mechanism of streptozotocin-induced and alloxaninduced damage in rat ${\beta}$-cells. Diabetologia 27(6): 587-591, 1984 https://doi.org/10.1007/BF00276973
  19. Junod A, Lambert AE, Orci L, Picet R, Gonet AE, Renold AE. Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med 126: 201-205, 1967
  20. Lee SS, Kim JW. Pharmacological studies on the water extract of fractus of Lycium chinese Mill. Duksung Bull Pharm Sci 2: 29-41, 1991
  21. Hassid WZ, Abraham X. Chemical procedures for analysis of polysaccharides In: Method in Enzymology 3. Academic press, pp.34-50, 1957
  22. Lowry OH, Rosebrough NJ, Farr AJ, Randall RR. Protein measurement with the foline phenol reagent. J Biol Chem 193: 265- 273, 1951
  23. Uchiyama M, Mihara M. Determination of malondialdehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 86: 271-278, 1978 https://doi.org/10.1016/0003-2697(78)90342-1
  24. Shon KH, Kim SH, Choi JW. Pretreatment with nicotinamide to prevent the pancreatic enzymes changes by streptozotocin in rats. J Korean Soc Food Nutr 21: 117-123, 1992
  25. Harvey JN, Jaffa AA, Margolium HS, Mayfeild RK. Renal kallikvein and hemodynamic abnormalities of kidney. Diabetes 39: 299-304, 1990 https://doi.org/10.2337/diabetes.39.3.299
  26. Kwang OG, Ysng JS, Rhee SJ. Effects of vitamin E on the antioxidative system of kidney in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 28(3): 654-662, 1999
  27. Lim SJ, Han HK. Hypoglycemic effect of fractions of Cassia tora extract in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 13(1): 23-29, 1997
  28. Gallaher DD, Casallany AS, Shoeman DW, Olsen JM. Diabetes increases excretion of urinary malonaldehyde conjugates in rats. Lipids 28: 663-666, 1993 https://doi.org/10.1007/BF02536063
  29. Steer HA, Socher M, McLean P. Renal hypertrophy in experimental diabetes changes in pentose pathways activity. Diabetes 24: 485-490, 1985
  30. Sococher M, Kunjara S, Baquer NZ, Mclean P. Regulation of glucose metabolism in livers and kidneys of NOD mice. Diabetes 40: 1467-1471, 1991 https://doi.org/10.2337/diabetes.40.11.1467
  31. Sheer KA, Sochor M, McLean P. Renal hypertrophy in edible and medicinal diabetes changes in pentose phosphate pathway activity. Diabetes 34: 485-490, 1985 https://doi.org/10.2337/diabetes.34.5.485
  32. Schaefer L, Schaefer RM, Ling H, Teschner M, Heidland A. Renal proteinase and kidney hypertrophy in edible and medicinal diabetes. Diabetologia 37: 567-571, 1994 https://doi.org/10.1007/BF00403374
  33. Rhee SJ, Choe WK, Cha BK, Yang JA, Kim KY. Effects of vitamin E and selenium on the antioxidant defense system in streptozotocin induced diabetic rats. Korean J Nutrition 29: 22-31, 1996
  34. Meglasson MD, Burch PT, Berner DK, Najafi H, Matschinsky FM. Indentification of glucokinase as alloxan sensitive glucose sensor of the pancreatic ${\beta}$-cell. Diabetes 35: 1163, 1986 https://doi.org/10.2337/diabetes.35.10.1163
  35. Cho YO, Yoon EK. The effects of vitamin $B_{6}$ deficiency energy metabolic concentration in streptozotocin-induced diabetic rats. Korean J Nutrition 27: 228-235, 1994
  36. Cho SY, Park JY, Park EM, Choi MS, Lee MK, Jeon SM, Jang MK, Kim MJ, Park YB. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clinica Chimica Acta 317: 109-117, 2002 https://doi.org/10.1016/S0009-8981(01)00762-8
  37. Choi JW, Sohn KH, Kim SH. Effects of nicotinamide on the serum lipid composition in streptozotocin-induced diabetic rats. J Korean Soc Food Nutr 20: 306-311, 1991
  38. Hong JH, Park MR, Rhee SJ. Effects of YK-209 mlberry leaves on HMG-CoA reductase and lipid composition of liver in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 31: 826-833, 2002 https://doi.org/10.3746/jkfn.2002.31.5.826
  39. O'meara NMG, Devery RAM, Owens D, Collins PB, Johnson AH, Tomekin GH. Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes 39: 626-633, 1990 https://doi.org/10.2337/diabetes.39.5.626
  40. Lakshmanan MR, Nepokroeff CM, Ness GC, Dugan RE, Potter JW. Stimulation of insulin of rat liver hydroxymethylglutaryl CoA reductase and cholesterol synthesizing activities. Biochem Biophys Res Commun 50: 704-710, 1973 https://doi.org/10.1016/0006-291X(73)91301-6
  41. Kwon EH, Jung MA, Rhee SJ, Choi SW, Cho SH. Antioxidant effects and improvement of lipid metabolism of mulberry fruit, mulberry leaves and silkworm powder with different mixing ratios in streptozotocin-induced diabetic rats. Korean J Nutrition 39(2): 91-99, 2006
  42. Cho YJ, Bang MA. Effects of dietary sea tangle on blood glucose, lipid and glutathione enzymes in streptozotocin-induced diabetic rats. Korean J Food Culture 19(4): 419-428, 2004
  43. Kedziora-Kornatowska K, Luciak M. Effect of aminoguanidine on lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney iochem. Mol Biol Int Oct 46(3): 577-583, 1998
  44. Celik S, Baydas G, Yilmaz O. Influence of vitamin E on the levels of fatty acids and MDA in some tissues of diabetic rats. Cell Biochem Funct 20(1): 67-71, 2002 https://doi.org/10.1002/cbf.939