SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites

  • Na, Kun (Division of Biotechnology, The Catholic University of Korea) ;
  • Park, Han-Soo (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Won, Hong-Youn (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Jong-Kwan (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Nam, Joo-Young (Functional Materials Group, Central R&D Center, Dongwoo Fine-chem Co. Ltd.) ;
  • Jin, Byung-Suk (Department of Applied Chemistry, College of Pharmacy, Dongduk Women's University)
  • Published : 2006.10.31

Abstract

This report presents a new technical approach for evaluating the fiber orientation of composites using small-angle light scattering (SALS). Glass fiber (GF)/polypropylene (PP) composites with different fiber orientations were prepared by drawing compression-molded specimens. The drawn samples were remelted and then annealed at $150^{\circ}C$ in order to induce a crystalline structure on the fiber surface, and then underwent SALS analysis. The samples showed a combination of circular and streak patterns. The model calculations demonstrated that the number of nuclei on the fiber surface and the thickness of the transcrystalline layer affected the sharpness and intensity of the streak pattern. In addition, the azimuthal angle of the streak pattern was found to be dependent on the direction of the transcrystalline layer, which correlated with the fiber direction. This correlation suggests that the fiber orientation in the composites can be easily evaluated using SALS.

Keywords

References

  1. Y. Zhang, R. Chen, and Z. Hui, J. Adh. Sci. Tech., 14, 1405 (2000) https://doi.org/10.1163/156856100742267
  2. S. J. Son, Y. M. Lee, and S. S. Im, J. Mater. Sci., 35, 5767 (2000) https://doi.org/10.1023/A:1004827128747
  3. C. Roux, J. Denault, and M. F. Champagne, J. Appl. Polym. Sci., 78, 2047 (2000) https://doi.org/10.1002/1097-4628(20001213)78:12<2047::AID-APP10>3.0.CO;2-Z
  4. C. K. Moon, Y. S. Um, H. H. Cho, J. O. Lee, and T. W. Park, Polymer (Korea), 14, 630 (1990)
  5. C. K. Moon and Y. S. Um, Polymer (Korea), 15, 289 (1991)
  6. J. Y. Nam, S. H. Park, K. H. Lee, and J. K. Kim, Polymer (Korea), 27, 299 (2003) https://doi.org/10.1016/0032-3861(86)90344-7
  7. T. Hashimoto, A. Todo, and H. Kawai, Polym. J., 10, 521 (1978) https://doi.org/10.1295/polymj.10.521
  8. C. Sawatari, M. Iida, and M. Matsuo, Macromolecules, 17, 1765 (1984) https://doi.org/10.1021/ma00139a024
  9. D. Blundell, Acta Crystallogr.; Sect. A, A26, 472 (1970)
  10. R. Hosemann and S. N. Bagchi, Direct Analysis of Diffraction by Matter, North-Holland Publishing Co., Amsterdam, 1962
  11. S. Clough, J. Van Aartsen, and R. S. Stein, J. Appl. Polym. Sci., 36, 3072 (1965)
  12. R. S. Stein, A. Misra, T. Yuasa, and F. Khambatta, Pure Appl. Chem., 49, 915 (1977) https://doi.org/10.1351/pac197749070915
  13. Meeten, Optical Properties of Polymers, Elsevier Applied Science Publishers, London, 1986
  14. C. H. Lee, H. Saito, and T. Inoue, Macromolecules, 28, 8096 (1995) https://doi.org/10.1021/ma00128a019
  15. J. Y. Nam, S. Kadomatsu, H. Saito, and T. Inoue, Polymer, 43, 2101 (2002) https://doi.org/10.1016/S0032-3861(01)00709-1
  16. G. Xian, L. Shen, and X. Yi, Cailiao Yanjiu Xuebao, 13, 509 (1999)
  17. W. Yang and G. Dai, Huadong Ligong Daxue Xuebao, 24, 675 (1998)
  18. S. Nagae, T. Otsuka, M. Nishida, T. Shimizu, T. Takeda, and S. Yumitori, J. Mater. Sci. Let., 14, 1234 (1995) https://doi.org/10.1007/BF00291816