DOI QR코드

DOI QR Code

Structural and Optical Properties of Self-assembled InAs Quantum Dots as a Function of Rapid Thermal Annealing Temperature

급속 열처리 온도에 따른 자발 형성된 InAs 양자점의 구조 및 광학 특성

  • Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
  • 조신호 (신라대학교 공과대학 전자재료공학과)
  • Published : 2006.03.27

Abstract

We present the effects of rapid thermal annealing (RTA) temperature on the structural and optical properties of self-assembled InAs quantum dot (QD) structures grown on GaAs substrates by molecular beam epitaxy (MBE). The photoluminescence (PL) measurements are performed in a closed-cycle refrigerator as a function of temperature for the unannealed and annealed samples. RTA at higher temperature results in the increase in island size, the corresponding decrease in the density of islands, and the redshift in the PL emission from the islands. The temperature dependence of the PL peak energy for the InAs QDs is well expressed by the Varshni equation. The thermal quenching activation energies for the samples unannealed and annealed at $600^{\circ}C$ are found to be $25{\pm}5meV$ and $47{\pm}5$ meV, respectively.

Keywords

References

  1. T. Raz, N. Shuall, G. Bahir, D. Ritter, D. Gershoni and S. N. G. Chu, Appl. Phys. Lett., 85, 3578 (2004) https://doi.org/10.1063/1.1806277
  2. V. A. Egorov, G. E. Cirlin, N. K. Polyakov, V. N. Petrov, A. A. Tonkikh, B. V. Volovik, Y. G. Musikhin, A. E. Zhukov, A. F. Tsatsulnikov and V. M. Ust inov, Nanotechnology, 11, 323 (2000) https://doi.org/10.1088/0957-4484/11/4/326
  3. B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Y. Kim and E. K. Kim, Appl. Phys. Lett., 73, 3129 (1998) https://doi.org/10.1063/1.122695
  4. G. S. Solomon, J. A. Trezza, A. F. Marshall and J. S. Harris, Jr., J. Vac. Sci. Technol., B14, 2208 (1996) https://doi.org/10.1116/1.588901
  5. M. Geiger, A. Bauknecht, F. Adler, H. Schweiger and F. Scholz, J. Cryst. Growth, 170, 558 (1997) https://doi.org/10.1016/S0022-0248(96)00608-2
  6. H. Lipsanen and M. Sopanen, Phys. Rev., B51, 1 (1995) https://doi.org/10.1103/PhysRevB.51.13868
  7. T. Yamada, H. Yamaguchi and Y. Horikoshi, Jpn. J. Appl. Phys., 35, L822 (1996) https://doi.org/10.1143/JJAP.35.L822
  8. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng and C. H. Tung, Phys. Rev., B57, 8805 (1998) https://doi.org/10.1103/PhysRevB.57.8805
  9. Q. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen and A. Madhukar, J. Vac. Sci. Technol., B14, 2203 (1996) https://doi.org/10.1116/1.588900
  10. B. D. Min, Y. Kim, E. K. Kim, S. K. Min and M. J. Park, Phys. Rev., B57, 11879 (1998) https://doi.org/10.1103/PhysRevB.57.11879
  11. Y. J. Park, C. K. Hahn, K. M. Kim, S. K. Jung, E. K. Kim and S. K. Min, SPIE, 3287, 305 (1998) https://doi.org/10.1117/12.304494
  12. A. O. Kosogov, P. Werner, U. Gosele, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu Egorov, A. E. Zhukov, P. S. Kpev, N. A. Bed and Zh. I. Alferov, Appl. Phys. Lett., 69, 3072 (1996) https://doi.org/10.1063/1.116843
  13. D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, E. Petitprez and P. Basmaji, J. Vac. Sci. Technol., B14, 2212 (1996) https://doi.org/10.1116/1.588902
  14. S. L. S. Freire, L. A. Cury, F. M. Matinaga, E. C. Vala-dares, M. V. B. Moreira, A. G. de Oliveira, A. R. Alves, J. M. C. Vilela, M. S. Andrade, T. M. Lima and J. A. Sluss, J. Vac. Sci. Technol., B14, 3555 (1996) https://doi.org/10.1116/1.588796
  15. G. Capellini, L. Di. Gaspare, F. Evangelisti and E. Palange, Appl. Phys. Lett., 70, 493 (1997) https://doi.org/10.1063/1.118191
  16. K. Kamath, P. Bhattacharya and J. Phillips, J. Cryst. Growth, 175, 720 (1997) https://doi.org/10.1016/S0022-0248(96)00815-9
  17. Y. P. Varshni, Physica, 39, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6