DOI QR코드

DOI QR Code

The Role of Lattice Oxygen in the Selective Catalytic Reduction of NOx on V2O5/TiO2 Catalysts

V2O5/TiO2 촉매의 선택적 환원촉매반응에서 격자산소의 역할

  • Ha, Heon-Phil (Division of Materials Science and Engineering, Pukyong National University) ;
  • Choi, Hee-Lack (Metal Processing Research Center, Korea Institute of Science and Technology)
  • 하헌필 (부경대학교 재료공학과) ;
  • 최희락 (한국과학기술연구원 금속공정센터)
  • Published : 2006.05.27

Abstract

In situ electrical conductivity measurements on $V_2O_5WO_3/TiO_2$ catalysts were carried out at between 100 and $300^{\circ}C$ under pure oxygen, NO and $NH_3$ to investigate the reaction mechanism for ammonia SCR (selective catalytic reduction) de NOX. The electrical conductivity of catalysts changed irregularly with supply of NO. It was, however, found that the electrical conductivity change with ammonia supply was regular and the increase of electrical conductivity was mainly caused by reduction of the labile surface oxygen. The electrical conductivity change of catalysts showed close relationship with the conversion rate of NOx. Variation of conversion rate in atmosphere without gaseous oxygen also showed that labile lattice oxygen is indispensable in the initial stage of the de NOx reaction. These results suggest that liable lattice oxygen acts decisive role in the de NOx mechanism. They also support that de NOx reaction occurs through the Eley?Rideal type mechanism. The amount of labile oxygen can be estimated from the measurement of electrical conductivity change for catalysts with ammonia supply. This suggests that measurement of the change can be used as a measure of the de NOx performance.

Keywords

References

  1. N. Y. Topsoe, J. A. Dumesic and H. Topsoe, J. Catal., 151, 226 (1995) https://doi.org/10.1006/jcat.1995.1024
  2. N. Y. Topsoe, J. A. Dumesic and H. Topsoe, J. Catal., 151, 241 (1995) https://doi.org/10.1006/jcat.1995.1025
  3. A. Miyamoto, Y. Yamazaki, M. Inomata, Y. Murakami, J. Phys. Chem., 85, 2366 (1981) https://doi.org/10.1021/j150616a015
  4. A. Miyamoto, Y. Yamazaki, T. Hattore, M. Inomata and Y. Murakami, J. Catal., 74, 144 (1982) https://doi.org/10.1016/0021-9517(82)90018-5
  5. V. I. Marsheneva, E. M. Slavinskaya, O. V. Kalinkina, G. V. Odegova, E. M. Moroz, G. V. Lavrova and A. N. Salanov, J. Catal., 155, 171-183 (1995) https://doi.org/10.1006/jcat.1995.1201
  6. L. Lietti and P. Forzatti, J. Catal., 147, 241 (1994) https://doi.org/10.1006/jcat.1994.1135
  7. L. Lietti, Appl. Catal., B., 10, 281 (1996) https://doi.org/10.1016/S0926-3373(97)80001-X
  8. J. M. Herrmann, J. Disdier, in: J. C. Vedrine, G. C. Bond (Eds.), EUROCAT Oxide (special issue), Catal. Today, 8, 135 (1993)
  9. J. M. Herrmann, J. Disdier, G. Deo and I. E. Wachs, J. Chem. Soc., Faraday Trans., 93, 1655 (1997) https://doi.org/10.1039/a607138d
  10. P. Viparelli, P. Ciambelli, J. C. Volta and J. M. Herrmann, Appl. Catal. A: General, 182, 165 (1999) https://doi.org/10.1016/S0926-860X(98)00433-5
  11. D. J. Dole, C. F. Cullis and D. J. Hucknall, J. Chem. Soc., Faraday Trans. I, 72, 2185 (1976) https://doi.org/10.1039/f19767202185
  12. R. B. Bjorklund, C. U. I. Odenbrand, J. G. M. Brandin, L. A. H. Anderson and B. Liedberg, J. Catal., 119, 187 (1989) https://doi.org/10.1016/0021-9517(89)90145-0
  13. R. B. Bjorklund, L. A. H. Anderson, C. U. I. Odenbrand, L. Sjoqvist and A. Lund, J. Phys. Chem., 96, 10953 (1992) https://doi.org/10.1021/j100205a064
  14. L. Casagrande, L. Lietti, I. Nova, P. Forzatti and A. Baiker, Appl. Catal. B., 22, 63 (1999) https://doi.org/10.1016/S0926-3373(99)00035-1