DOI QR코드

DOI QR Code

Structural and Optical Properties of ZnO Thin Films Grown on SiO2/Si(100) Substrates by RF Magnetron Sputtering

RF 마그네트론 스퍼터링 방법으로 SiO2/Si(100) 기판위에 성장시킨 ZnO 박막의 구조 및 광특성

  • Han Seok Kyu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong Soon-Ku (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee Jae-Wook (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee Jeong-Yong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 한석규 (충남대학교 재료공학과) ;
  • 홍순구 (충남대학교 재료공학과) ;
  • 김효진 (충남대학교 재료공학과) ;
  • 이재욱 (한국과학기술원 신소재공학과) ;
  • 이정용 (한국과학기술원 신소재공학과)
  • Published : 2006.06.27

Abstract

A series of ZnO thin films were grown by radio-frequency (RF) magnetron sputtering with various RF powers on $SiO_2/Si$(100) substrates at $500^{\circ}C$. Thicknesses of the investigated ZnO films were fixed to about 250nm by changing the growth time based on the changes of growth rates with RF powers. All the ZnO thin films were grown with <0001> preferred orientation. Average grain sizes of about 250nm-thick ZnO films evaluated by FE-SEM, AFM, and TEM were increased by decreasing the RF power. Structural properties addressed by FWHM values of XRD (0002) omega rocking curves and their intensities were better for the smaller grain sized ZnO films grown with high RF powers, which implies small values of tilt for smaller grain sized ZnO films. However, optical properties addressed by intensities of band edge emissions from room temperature and low temperature photoluminescence were better for the larger grain sized ZnO films with low RF power, which implies grain boundaries acted as nonradiation recombination centers.

Keywords

References

  1. L.-J. Meng, M.P. Dos Santos, Thin Solid Films, 250(1-2), 26 (1994) https://doi.org/10.1016/0040-6090(94)90159-7
  2. David B. Laks, Chris G. Van de Walle, G. F. Neumark and Sokrates T. Pantelides, Appl. Phys. Lett., 63(10), 1375 (1993) https://doi.org/10.1063/1.109681
  3. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai, J. Appl. Phys, 93(3), 1624(2003) https://doi.org/10.1063/1.1534627
  4. R.F. Service, Science, 276(5314), 895 (1997) https://doi.org/10.1126/science.276.5314.895
  5. T. Soki, Y. Hatanaka and D. C. Look, Appl. Phys. Lett., 76(22), 3257 (2000) https://doi.org/10.1063/1.126599
  6. H. Yamamoto, N. Saiga and K. Nishimori, Appl. Surf. Sci., 169-170, 616, (2001)
  7. N. Takakashi, K. Kaiya, K. Omichi, J. Nakamura, S. Okamoto and H. Yamamoto, J. Crystal Growth, 209(4), 822, (2000) https://doi.org/10.1016/S0022-0248(99)00611-9
  8. R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado, J. Crystal Growth, 247(3-4), 497 (2003) https://doi.org/10.1016/S0022-0248(02)01917-6
  9. S. K. Hong, Y. Chen, H. J. Ko, H. Wenisch, T. Hanada and T. Yao, J. Electron. Mat., 30, 647 (2001) https://doi.org/10.1007/BF02665850
  10. R. Ondo-Nding, G. Ferblantier, M. A. Kalfioui, A. Boyer and A. Foucaran, J. Crystal Growth., 255(1-2), 130-135 (2003) https://doi.org/10.1016/S0022-0248(03)01243-0
  11. Y. S. No, T. W. Kim, Y. S. Jung and W. K. Choi, Appl. Phys. Sci., in press (2006)
  12. D. K. Hwang, K. H. Bang, M. C. Jeong and J. M. Myuong, J. Crystal Growth., 254(3-4), 449-455 (2003) https://doi.org/10.1016/S0022-0248(03)01205-3
  13. Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou and S. Yang, J. Crystal Growth., 243(34), 439-443 (2002) https://doi.org/10.1016/S0022-0248(02)01569-5
  14. Hyoun Woo Kim ,Nam Ho Kim, Materials Science and Engineering B., 103(3), 297-302 (2003) https://doi.org/10.1016/S0921-5107(03)00281-2
  15. Y. M. Lu, W. S. Hwang, W. Y. Liu and J. S. Yang. Mater. Chem, Phys., 72(2), 269-272 (2001) https://doi.org/10.1016/S0254-0584(01)00450-3
  16. Harold P. Klug, Leroy E. Alexander, X-ray Diffraction Procedures 2nd ed., p.655-704, Wiley-Interscience, USA, (1974)
  17. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction 3rd ed., p.388, Prentice Hall, New Jersey, USA, (2001)
  18. J. -R. Duclere, C. M. Loughlin, J. Fryar, R. O'Haire, M. Guillox-Viry, A. Meaney, A. Perrin, E. McGlynn, M. O. Henry and J. -P. Mosnier. Thin Solid Films., 500(1-2), 78-83 (2006) https://doi.org/10.1016/j.tsf.2005.11.017
  19. T, Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov and T. Yao, Appl. Phys. Lett., 81(7), 1231-1233 (2002) https://doi.org/10.1063/1.1499991
  20. S. H. Jeoug, J. K. Kim and B. T. Lee, J. Phys. D: Appl. Phys., 36(16), 2017-2020 (2003) https://doi.org/10.1088/0022-3727/36/16/316