DOI QR코드

DOI QR Code

Surface Modification of Polytetrafluoroethylene by 1 keV Argon and Hydrogen Irradiated in Nitrogen and Ammonia Gas Environment

질소와 암모니아 존재하에서 1 keV 에너지의 알곤과 수소 이온 조사에 의한 PTFE(polytetrafluoroethylene)의 표면형상 변화연구

  • Published : 2006.06.27

Abstract

Polytetrafluoroethylene (PTFE) surface was modified for improving hydrophilicity by ion irradiation in environmental gas of $N_2$ and $NH_3$, respectively. The water contact angle onto the PTFE surface increased from $104{\circ}$ to over $140{\circ}$ by Ar ion irradiation in $N_2$ gas. In the case of $NH_3$ as environmental gas, there were a slight increase of contact angle from ion dose of $1{\times}10^{15}\;to\;5{\times}10^{15}\;ions/cm^2$, and its dramatic decrease to the value of 35o at the conditions of ion dose higher than $1{\times}10^{16}\;ions/cm^2$. It was found from SEM results that the surface morphology of PTFE was changed into one with filament structure after Ar ion irradiation in $N_2$ gas environments. On the contrary, Ar ion irradiation in $NH_3$ gas condition induced the PTFE surface with network structure. Hydrogen ion irradiation resulted in a little change of PTFE surface morphology, comparing with the case of Ar ion irradiation. The water contact angle of hydrogen ion irradiated PTFE surface in reactive gas decreased with increment of ion dose. Hydrogen ion irradiation could improve hydrophilicity with little change of surface morphology. It might be considered from FT-IR results that the improvement in wettability of PTFE surface by ion irradiation in $N_2$ and $NH_3$ gases could be due to the hydrophilic groups of NHx bonds.

Keywords

References

  1. J. Zhang, Q. Wu, X. Yu, P. Zha and H. Li, Material. Lett., 48, 362 (2001) https://doi.org/10.1016/S0167-577X(00)00328-1
  2. S. K. Koh, W. K. Choi, J. S. Cho and S. K. Song, J. Mater. Res., 11, 2993 (1996)
  3. E. T. Kang, K. L. Tan, K. Kato, Y. Uyama and Y. Ikada, Macromolecules., 29, 6872 (1996) https://doi.org/10.1021/ma960161g
  4. S. Y. Wu, E. T. Kang, K. G. Neoh, H. S. Han and K. L. Tan, Macromolecules., 32, 186 (1999) https://doi.org/10.1021/ma9803133
  5. I. Mathieson, D. M. Brewis, I. Sutherland and R. A. Cayless, J. Adhes., 46, 49 (1994) https://doi.org/10.1080/00218469408026648
  6. G. C. S. Collis, G. M. Sessler, J. E. West and H. Schonhorn, J. Appl. Polym. Sci., 9, 1173 (1973)
  7. K. Lunkwitz, U. Gross and V. Gloeckner, Acta Polymerica., 36, 431(1985) https://doi.org/10.1002/actp.1985.010360807
  8. M. J. Mirtich and J. S. Sovey, J. Vac. Sci. Technol., 16(2), 809 (1971) https://doi.org/10.1116/1.570094
  9. S. Han, S. K. Koh and K. H. Yoon, J. Electochemical Sci., 146(11), 4327 (1999) https://doi.org/10.1149/1.1392636
  10. M. I. Bro and C. A. Sperati, J. Polym. Sci., 38, 289 (1959) https://doi.org/10.1002/pol.1959.1203813401
  11. M. D. Buckmaster, R. V. Foss and R. A. Morgan, EP-0222 945, 1985, to Du Pont
  12. C. A. Chang, J. E. E. baglin, A. G. Schrott and K. C. Lin, Appl. Phys, Lett., 51, 103 (1987) https://doi.org/10.1063/1.98637
  13. C. Wintergill, Nucl. Instrum. Methods., B1, 595 (1984) https://doi.org/10.1016/0168-583X(84)90129-0
  14. T. Venktesan, L. Calcagno, B. S. Ellman and G. Foti, Ion Beam Modification of Insulators, edited by P. Mazzoldi and G. W. Arnold, Elsevier, New York., 301 (1987)
  15. K. Lunkwitz, A. Ferse, P. Dietrich, G. Engler, U. GroB and D. Prescher, J. Schulze, Plaste und Kaustschuck., 26, 318 (1979)
  16. K. Lunkwitz, U. GroB and V. Glockner, Acta Polymerica., 36, (1985) 431 https://doi.org/10.1002/actp.1985.010360807
  17. J. Heitz, H. Niino and A. Yabe, Apple, Phys. Lett., 68 (1996)
  18. U. Lappan, U. GeiBler and K. Lunkwitz, Nucl. Instr. And Meth. Phys. Research. B., 151, 222 (1999 ) https://doi.org/10.1016/S0168-583X(99)00115-9