DOI QR코드

DOI QR Code

Thermoelectric and Electronic Transport Properties of Nano-structured FexCo4-xSb12 Prepared by Mechanical Alloying Process

기계적 합금화법으로 제조된 나노 미세 구조 FexCo4-xSb12의 열전 특성 및 전자 이동 특성

  • Kim, Il-Ho (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials (ReSEM), Chungju National University) ;
  • Kwon, Joon-Chul (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials (ReSEM), Chungju National University) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials (ReSEM), Chungju National University)
  • 김일호 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터) ;
  • 권준철 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환.저장 소재 및 부품개발 연구센터)
  • Published : 2006.10.27

Abstract

A new class of compounds in the form of skutterudite structure, Fe doped $CoSb_3$ with a nominal composition of $Fe_xCo_{4-x}Sb_{12}$ ($0{\leq}x{\leq}2.5$), were synthesized by mechanical alloying of elemental powders followed by vacuum hot pressing. Nanostructured, single-phase skutterudites were successfully produced by vacuum hot pressing using as-milled powders without subsequent heat-treatments for the compositions of $x{\leq}1.5$. However, second phase was found to form in case of $x{\geq}2$, suggesting the solubility limit of Fe with Co in this system. Thermoelectric properties including thermal conductivity from 300 to 600 K were measured and discussed. Lattice thermal conductivity was greatly reduced by introducing a dopant up to x=1.5 as well as by increasing phonon scattering in nanostructured skutterudite, leading to enhancement in the thermoelectric figure of merit. The maximum figure of merit was found to be 0.32 at 600 K in the composition of $Fe_xCo_{4-x}Sb_{12}$.

Keywords

References

  1. G. S. Nolas, D. T. Morelli and T. M. Tritt. Annu. Rev. Mater. Sci., 29, 89 (1999) https://doi.org/10.1146/annurev.matsci.29.1.89
  2. T. Caillat, A. Borschchevsky and J.-P. Fleurial, J. Appl. Phys., 80(8), 4442 (1996) https://doi.org/10.1063/1.363405
  3. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, J. Appl. Phys. 78(2), 1013 (1995) https://doi.org/10.1063/1.360402
  4. Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, J. Alloys and Comp., 315, 193 (2001) https://doi.org/10.1016/S0925-8388(00)01275-5
  5. J. X. Jang, Q. M. Lu, K. G. Liu, L. Zhang and M. L. Zou, Mater. Letters, 58, 1981 (2004) https://doi.org/10.1016/j.matlet.2003.11.032
  6. J. Yang, Y. C. Chen, J. Peng, X, Song, W. Zhu, J. Su and R. Chen, J. Alloys and Comp., 375, 229 (2004) https://doi.org/10.1016/j.jallcom.2003.11.036
  7. C. C. Koch, Annu. Rev. Mater. Sci., 121 (1989)
  8. D. M. Rowe and V. S. Schukla, J. Appl. Phys., 52(12), 7421 (1981) https://doi.org/10.1063/1.328733
  9. S.-C. Ur, P. Nash and I.-H. Kim, J. Alloys and Comp., 361, 84 (2003) https://doi.org/10.1016/S0925-8388(03)00418-3
  10. S. Katsuyama, Y. Shichijo, M. Ito, K. Majima and H. Nagai, J. Appl. Phys., 84, 6708 (1998) https://doi.org/10.1063/1.369048
  11. J. Nagao, M. Ferhat, H. Anno, K. Matsubara, E. Hatta and K. Mukasa, Appl. Phys. Lett., 76(23), 3436 (2000) https://doi.org/10.1063/1.126670
  12. S.-C. Ur, J.-C. Kwon, M.-K. Choi, S.-Y. Kweon, T.-W. Hong, I.-H. Kim and Y.-G Lee, Mater. Sci. Forum, 534, 1425 (2006)