DOI QR코드

DOI QR Code

Micro-pinholes in Composite Cobalt Nickel Silicides

코발트 니켈 합금 구조에서 생성된 실리사이드의 마이크로 핀홀의 발생

  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Sang-Yeob (Department of Materials Science and Engineering, University of Seoul) ;
  • Jeon, Jang-Bae (University of Texas at Dallas, Electrical Engineering) ;
  • Kim, M.J. (University of Texas at Dallas, Electrical Engineering)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김상엽 (서울시립대학교 신소재공학과) ;
  • 전장배 (텍사스달라스주립대학교 전기공학부) ;
  • 김문제 (텍사스달라스주립대학교 전기공학부)
  • Published : 2006.10.27

Abstract

We fabricated thermal evaporated 10 nm-$Ni_xCo_{1-x}$ (x=0.2, 0.5 and 0.8) /(poly)Si films to form nanothick cobalt nickel composite silicides by a rapid thermal annealing at $700{\sim}1100^{\circ}C$ for 40 seconds. A field emission scanning electron microscope and a micro-Raman spectrometer were employed for microstructure and silicon residual stress characterization, respectively. We observed self-aligned micro-pinholes on single crystal silicon substrates silicidized at $1100^{\circ}C$. Raman silicon peak shift indicates that the residual tensile strain of $10^{-3}$ in single crystal silicon substrates existed after the silicide process. We propose thermal stress from silicide exothermic reaction and high temperature silicidation annealing may cause the pinholes. Those pinholes are expected to be avoided by lowering the silicidation temperature. Our results imply that we may use our newly proposed composite silicides to induce the appropriate strained layer in silicion substrates.

Keywords

References

  1. O. Song, S. Cheong, D. Kim and Y. Choi, Kor. J. Mater. Res., 14(11), 769, (2004) https://doi.org/10.3740/MRSK.2004.14.11.769
  2. O. Song, S. Cheong and D. Kim, Kor. J. Mater. Res., 14(12), 846, (2004) https://doi.org/10.3740/MRSK.2004.14.12.846
  3. S. Cheong and O. Song, Kor. J. Mater. Res., 12(11), 883, (2002) https://doi.org/10.3740/MRSK.2002.12.11.883
  4. L. Ruan and D. M. Chen, Appl. Phys. Lett., 72(26), 3464, (1998) https://doi.org/10.1063/1.121667
  5. I. Belousov, E. Rudenko, S. Linzen and P. Seidel, Thin solid film, 325, 145, (1998) https://doi.org/10.1016/S0040-6090(98)00510-0
  6. W. H. Weber and R. Merlin, Springer New York, 55, (2000)
  7. Yilan Kang, Yu Qiu, Z. Lei and Ming Hu, Optics and Lasers in Engineering, 43, 847, (2005) https://doi.org/10.1016/j.optlaseng.2004.09.005
  8. F. M. Liu, J. H. Ye, B. Ren, Z. L. Yang, Y. Y. Liao, A. See, L. Chan and Z. Q. Tian, Thin Solid Films, 471, 257, (2005) https://doi.org/10.1016/j.tsf.2004.06.111
  9. I. Belousov, A. Grib, S. Linzen and P. Seidel, Nuclear Instruments and Methods in Physics Research B, 186, 61, (2002) https://doi.org/10.1016/S0168-583X(01)00946-6
  10. Jiang Huang, PhD thesis of University of Texas at Dallas, (2006)