Subcellular Localization of Novel Stress Protein VISP

새로운 스트레스 단백질인 VISP의 세포내 위치

  • Moon, Chang-Hoon (Department of Biological Sciences, University of Ulsan) ;
  • Yoon, Won-Joon (Department of Biological Sciences, University of Ulsan) ;
  • Ko, Myoung-Seok (Department of Biological Sciences, University of Ulsan) ;
  • Kim, Hyun-Ju (Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Jeong-Woo (Department of Biological Sciences, University of Ulsan)
  • 문창훈 (울산대학교 생명과학부) ;
  • 윤원준 (울산대학교 생명과학부) ;
  • 고명석 (울산대학교 생명과학부) ;
  • 김현주 (포항공과대학 생명과학과) ;
  • 박정우 (울산대학교 생명과학부)
  • Published : 2006.12.30

Abstract

Previously we demonstrated that virus-inducible stress protein (VISP) is induced in fish cells by the infection of a fish rhabdovirus. In this paper, we investigated the subcellular localization of the VISP and determined the region of VISP responsible for the subcellular localization. The CHSE-214 cells were stained with monoclonal antibody raised against VISP and observed with confocal microscope to detect the endogenous VISP. The results showed that the VISP localizes to the perinuclear region as spots. A plasmid expressing VISP fused to enhanced green fluorescent protein (EGFP) was constructed. The transient expression of full-length VISP fused to EGFP in CHSE-214 cells confirmed the spot formation of the VISP at perinuclear region. To determine the region responsible for the perinuclear localization of the VISP, we constructed a series of deletion mutants and, by using these deletion mutants, we found that C-terminal region of the VISP (aa 612-710) is essential for the perinuclear distribution of VISP and that this region contained nuclear receptor binding motif (691-TLTSLLL-697). Our results suggest that VISP localizes to the perinuclear region and C-terminal regions are important for this localization. Further studies on the role of the perinuclear localization of VISP in IHNV growth mali reveal the novel mechanism of IHNV pathogenecity.

이전의 연구 결과 어류 rhabdovirus에 감염된 세포에서 virus-inducible stress protein (VISP)의 발현이 증가함을 확인하였다. 본 연구에서는 VISP의 세포내 위치를 확인하였으며, 또한 세포내 위치 결정에 중요한 역할을 담당하는 VISP의 부위를 확인하였다. 먼저 endogenous VISP의 세포내 위치를 확인하기 위하여 CHSE-214 세포를 VISP에 대한 단클론항체를 사용하여 염색한 후 confocal microscope로 관찰하였다. 그 결과 VISP가 세포의 핵 주변에 점구조를 형성함이 확인되었다. 이를 확인하기 위하여 VISP에 enhanced green fluorescent protein (EGFP)이 붙은 fusion gene을 발현하는 plasmid를 제조하였다. EGFP-VISP를 발현하는 plasmid 벡터를 세포에 transfection 시킨 후 confocal microscope로 관찰한 결과 핵 주변에 점구조를 형성함이 확인되었다. VISP의 아미노산서열 중 핵 주변의 점구조 형성에 관여하는 부분을 확인하기 위하여 VISP의 다양한 deletion mutant들을 제조하였다. 이 mutant를 사용한 transfection 실험 결과 VISP의 C-terminal 부위(aa 612-710)가 핵주변의 점구조 형성에 중요한 역할을 담당함이 확인되었으며, 이 부분의 functional motif 분석결과 691-TLTSLLL-697 부위에 nuclear receptor binding motif가 존재함이 확인되었다. 이와 같은 결과들을 종합하면, VISP는 핵 주변에 존재하며 VISP의 C-terminal부위가 혀 주위 분포에 중요한 역할을 담당함을 알 수 있었다. 이후의 연구로부터 VISP의 핵 주위 분포가 IHNV의 성장에 미치는 영향이 확인되면 IHNV 병원성의 새로운 기작을 밝혀내는 중요한 자료가 될 것이다.

Keywords

References

  1. Almog, Y., A. Klein, R. Adler, O. Laub, and R. Tur-Kaspa. 1992. Estrogen suppresses hepatitis B virus expression in male athymic mice transplanted with HBV transfected HepG-2 cells. Antiviral Res. 19, 285-7293 https://doi.org/10.1016/0166-3542(92)90010-3
  2. Arnold, R. and W. Konig. 2006. Peroxisome proliferator-activated receptor-gamma agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells. Virology 350, 335-346 https://doi.org/10.1016/j.virol.2006.03.008
  3. Bresnick, E.H., F.C. Dalman, E.R. Sanchez, and W.B. Pratt. 1989. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J. Biol. Chem. 264, 4992-4997
  4. Chen, C.J., M.W. Yu, and Y.F. Liaw. 1997. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J. Gastroenteral. Hepatol. 12, S294-308 https://doi.org/10.1111/j.1440-1746.1997.tb00513.x
  5. Cho, W.J., S.J. Cha, J.W. Do, J.Y. Choi, J.Y. Lee, C.S. Jeong, K.J. Cho, W.S. Choi, H.S. Kang, H.D. Kim, and J.W. Park. 1997. A novel 90-kDa stress protein induced in fish cells by fish rhabdovirus infection. Biochem. Biophys. Res. Com. 233, 316-319 https://doi.org/10.1006/bbrc.1997.6387
  6. Cho, W.J., W.J. Yoon, C.H. Moon, S.J. Cha, H. Song, H.R. Cho, S.J. Jang, D.K. Chung, C.S. Jeong, and J.W. Park. 2002. Molecular cloning of a novel chaperone-like protein induced by rhabdovirus infection with sequence similarity to the Bacteriol extracellular solute-binding protein family 5. J. Biol. Chem. 277, 41489-41496 https://doi.org/10.1074/jbc.M207104200
  7. Chromy, L.R., A. Oltman, P.A. Estes, and R.L. Garcea. 2006. Chaperone-mediated in vitro disassembly of polyoma- and papil-lomaviruses. J. Virol. 80, 5086-5091 https://doi.org/10.1128/JVI.80.10.5086-5091.2006
  8. Collins, P. L. and L. E. Hightower. 1982. Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J. Virol. 44, 703-707
  9. Garimella, R., X. Liu, W. Qiao, X. Liang, E.R. Zuiderweg, M.I. Riley, and S.R. Van Doren. 2006. Hsc70 contacts helix III of the J domain from po1yomavirus T antigens: addressing a dilemma in the chaperone hypothesis of how they release E2F from pRb. Biochemistry 45, 6917-6929 https://doi.org/10.1021/bi060411d
  10. Garry, RF., E.T. Ulug, and H.R. Bose, Jr. 1983. Induction of stress proteins in Sindbis virus- and vesicular stomatitis virus-infected cells. Virology 129, 319-332 https://doi.org/10.1016/0042-6822(83)90171-X
  11. Gething, M.J. and J. Sambrook. 1992. Protein folding in the cell. Nature 355, 33-45 https://doi.org/10.1038/355033a0
  12. Hammond, C. and A. Helenius. 1994. Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266, 456-458 https://doi.org/10.1126/science.7939687
  13. Hammond, C., I. Braakman, and A. Helenius. 1994. Role of Nlinked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA. 91, 913-917
  14. Han, J., L. Ding, B. Yuan, X. Yang, X. Wang, J. Li, Q. Lu, C. Huang, and Q. Ye. 2006. Hepatitis B virus X protein and the estrogen receptor variant lacking exon 5 inhibit estrogen receptor signaling in hepatoma cells. Nucleic Acids Res. 34, 3095-3106 https://doi.org/10.1093/nar/gkl389
  15. Hart, S.M. 2002. Modulation of nuclear receptor dependent transcription. Biol Res 35, 295-303
  16. Jindal, S. and R.A. Young. 1992. Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J. Virol. 66, 5357-5362
  17. Khandjian, E.W. and H. Turler. 1983. Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol. Cell. Biol. 3, 1-8 https://doi.org/10.1128/MCB.3.1.1
  18. Kumar, M. and D. Mitra. 2005. Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication. J. Biol. Chem. 280, 40041-40050 https://doi.org/10.1074/jbc.M508904200
  19. Kumar, S., M. Saradhi, N.K. Chaturvedi, and R.K. Tyagi. 2006. Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol. Cell. Endocrinol. 246, 147-156 https://doi.org/10.1016/j.mce.2005.11.028
  20. La Thangue, N.B., K. Shriver, C. Dawson, and W.L. Chan. 1984. Herpes simplex virus infection causes the accumulation of a heatshock protein. EMBO J. 3, 267-277
  21. Lee, J.Y., W.J. Cho, J.W. Do, H.J. Kim, J.W. Park, M.A. Park, S.G Sohn, G. Jeong, and Y.C. Hah. 1996. Monoclonal antibodies raised against infectious haematopoietic necrosis virus (IHNV) G protein and a cellular 90 kDa protein neutralize IHNV infection in vitro. J. Gen. Virol. 77, 1731-1737 https://doi.org/10.1099/0022-1317-77-8-1731
  22. Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191 https://doi.org/10.1146/annurev.bi.55.070186.005443
  23. Lindquist, S. and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22, 631-637 https://doi.org/10.1146/annurev.ge.22.120188.003215
  24. Macejak, D.G. and R.B. Luftig. 1991. Association of HSP70 with the adenovirus type 5 fiber protein in infected HEp-2 cells. Virology 180, 120-125 https://doi.org/10.1016/0042-6822(91)90015-4
  25. Macnab, J.C., A. Orr, and N.B. La Thangue. 1985. Cellular proteins expressed in herpes simplex virus transformed cells also accumulate on herpes simplex virus infection. EMBO J. 4, 3223-3228
  26. Mulvey, M. and D.T. Brown. 1995. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins. J. Virol. 69, 1621-1627
  27. Nevins, J.R. 1982. Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29, 913-919 https://doi.org/10.1016/0092-8674(82)90453-6
  28. Otake, K., S. Omoto, T. Yamamoto, H. Okuyarna, H. Okada, N. Okada, M. Kawai, N.K. Saksena, and Y.R. Fujii. 2004. HIV-I Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated complexes. AIDS 23, 189-198
  29. Passinen, S., J. Valkila, T. Manninen, H. Syvala, and T. Ylikomi. 2001. The C-tenninal half of Hsp90 is responsible for its cytoplasmic localization. Eur J Biochem. 268, 5337-5342 https://doi.org/10.1046/j.0014-2956.2001.02467.x
  30. Puntervoll, P., R. Linding, C. Gemund, S. Chabanis-Davidson, M. Mattingsdal, S. Cameron, D.M.A. Martin, G. Ausiello, B. Brannetti, A. Costantini, F. Ferre, V. Maselli, A. Via, G. Cesareni, F. Diella, G. Superti-Furga, L. Wyrwicz, C. Ramu, C. McGuigan, R. Gudavalli, I. Letunic, P. Bork, L. Rychlewski, B. Kuster, M. Helmer-Citterich, W.N. Hunter, R. Aasland, and T.J. Gibson. 2003. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res. 31, 3625-3630 https://doi.org/10.1093/nar/gkg545
  31. Sagara, J. and A. Kawai. 1992. Identification of heat shock protein 70 in the rabies virion. Virology 190, 845-848 https://doi.org/10.1016/0042-6822(92)90923-D
  32. Scherrer, L.C., F.C. Dalman, E. Massa, S. Meshinchi, and W.B. Pratt. 1990. Structural and functional reconstitution of the glucocorticoid receptor-hsp90 complex. J. Biol. Chem. 265, 21397-21400
  33. Sedger, L. and J. Ruby. 1994. Heal: shock response to vaccinia virus infection. J. Virol. 68, 4685-4689
  34. Serva, S. and P.D. Nagy. 2006. Proteornics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J. Virol. 80, 2162-2169 https://doi.org/10.1128/JVI.80.5.2162-2169.2006
  35. Tang, H. and A. McLachan. 2001. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc. Natl. Acad. Sci. U.S.A. 98, 1841-1846
  36. Tsukahara, F. and Y. Maru. 2004. Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem. 279, 8867-8872 https://doi.org/10.1074/jbc.M308848200
  37. Tuohimaa, P., A. Pekki, M. Blauer, T. Joensuu, P. Vilja, and T. Ylikorni. 1993. Nuclear progesterone receptor is mainly heat shock protein 90-free in vivo. Proc. Natl Aead. Sci. USA 90, 5848-5852
  38. Yu, M.W. and C.J. Chen. 1994. Hepatitis B and C viruses in the development of hepatocellular carcinoma. Crit. Rev. Oncol. Hematol. 17, 71-91 https://doi.org/10.1016/1040-8428(94)90020-5