The Analysis of Expression of Autoinducer Synthesis Genes Involved in Quorum Sensing among Catheter Associated Bacteria

요로감염에 관여하는 카테터 내 박테리아의 Quorum Sensing 관련 autoinducer 합성 유전자의 발현분석

  • Lee, Mi-Hye (Department of Biological Engineering, Kyonggi University) ;
  • Seo, Pil-Soo (Department of Korea Biological Resource Center, Kyonggi University) ;
  • Lee, Ji-Youl (Department of Urology, School of Medicine, The Catholic University) ;
  • Peck, Kyong-Ran (Division of Infectious Diseases, Sungkyunkwan University School of Medicine) ;
  • Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
  • 이미혜 (경기대학교 생명공학과) ;
  • 서필수 (경기대학교 생물자원 특성화 사업단) ;
  • 이지열 (가톨릭대학교 비뇨기과) ;
  • 백경란 (성균관대학교 감염내과) ;
  • 이상섭 (경기대학교 생명공학과)
  • Published : 2006.12.30

Abstract

The most biofilm forming bacteria in catheter, Esctherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were isolated and identified from a patient's catheter occuring catheter-associated urinary tract infection (CA-UTI). We examined mRNA expression and its quantification of AIs synthetic genes encoding signal substance of quorum sensing from each bacterial species in order to elucidated quorum sensing mechanism. Both pure cultures for each bacterial strains and a mixed cultures with three were grown for 24 hr and 30 days. Initial densities to be able to detect mRNA expression oil single strains culture were shown at $2.4{\times}10^5$ CFU/ml, $5.4{\times}10^6$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $6.9{\times}10^4$ CFU/ml of P. aeruginosa for rhlI and lasI. Also, in mixed culture of three, initial cell densities of mRNA expression were appear to at $7.3{\times}10^5$ CFU/ml, $1.6{\times}10^7$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $2.1{\times}10^5$ CFU/ml of P. aeruginosa for rhlI and lasI. Each AIs synthetic gene was expressed in initial cell density and the mRNA expression of the genes were detected continously during 30 days. And then, the quantification of mRNA expression level of ygaG, rhlI, last, and luxS which were related AIs synthesis was done each time point by real-time RT-PCR. Interestingly, the mRNA levels of ygaG, rhlI, lasI, and luxS from the mixed culture was higher than those from each single strain culture. In the case of E. coli ygaG, the amount of transcript from the mixed culture was at least 30 times for that from single culture. In the case of P. aeruginosa rhlI and lasI, the amount of transcript from the mixed culture was at least 40 times and 250 times for that from single strain culture. In the case of S. aureus luxS, the amount of transcript from the mixed culture was at least 5 times for that from single strain culture. And specially, the mRNA expression of rhlI and lasI of P. aeruginosa showed the highest efficency among four AIs synthetic genes.

본 연구에서는 신경인성 방광으로 요도 카테터를 유치하고 있는 환자의 카테터로부터 카테터 내 요로감염(Catheter-Associate Urinary Tract Infection; CA-UTI)에 관여하는 박테리아인 Escherichia coli, Pseudomonas aeruginosa 그리고 Staphylococcus aureus를 순수 분리, 동정하였다. 이 균주들을 대상으로 하여 quorum sensing mechanism을 규명하는 기초 연구로 각 균주의 quorum sensing 신호물질인 autoinducer (AIs)를 합성하는 유전자의 mRNA 발현을 확인하고, 정략분석 하였다. 각 세 균주를 단일과 세 균주의 혼합으로 24시간, 30일 동안 배양하며 일정 시간 간격으로 sample을 얻었다. 이 중 24시간 배양한 sample을 가지고 reverse transcription polymerase chain reaction (RT-PCR)을 수행하여 각 AIs 합성 유전자가 발현되는 최초 박테리아 밀도를 확인하였다. 단일배양에서 E. coli와 S. aureus의 AIs 합성 유전자(ygaG와 luxS)의 mRNA가 발현되는 최초 박테리아 밀도는 $2.4{\times}20^5$ CFU/ml, $5.4{\times}10^6$ CFU/ml 이었으며 P. aeruginosa의 rhlI와 lasI의 경우 $6.9{\times}10^4$ CFU/ml로 나타났다. 세 균주의 혼합배양에서 ygaG와 luxS의 mRNA가 발현되는 최초 박테리아 밀도는$7.3{\times}10^5$ CFU/ml, $1.6{\times}10^7$ CFU/ml이었으며 rhlI와 lasI의 경우 $2.1{\times}10^5$ CFU/ml로 나타났다. 또한 30일 배양한 sample의 RT-PCR 결과, 배양초기부터 각 AIs 합성 유전자들의 mRNA가 30일 동안 일정한 양만큼 지속적으로 발현됨을 확인하였다. Real-time RT-PCR을 이용한 AIs 합성 유전자의 mRNA 발현을 정량 분석한 결과 각 균주에서 단일배양보다 혼합배양시 AIs 합성 유전자의 발현이 더 많았다. 가장 많은 발현량의 차이를 보인 경우 E. coli ygaG의 mRNA 발현량은 단일배양보다 세 균주의 혼합배양시 최고 약 30배 이상이 증가하였고, P. aeruginosa rhlI의 경우 단일배양보다 혼합배양시 최고 약 40배, P. aeruginosa lasI의 경우 최고 약 250배 그리고 S. aureus luxS의 경우는 단일배양보다 혼합배양시 최고 약 5배 이상 mRNA 발현량이 증가하였다. 또한 세 균주의 4가지 유전자 중 P. aeruginosa의 rhlI와 lasI의 mRNA가 가장 많은 양으로 발현됨을 확인하였다.

Keywords

References

  1. 송소연, 이지열, 고준성, 길성호, 이상섭, 정희태 등. 2005. 항생제 도포 요도카테터의 바이오필름 형성에 대한 장기간 효과. 대한비뇨기학회지 46, 730-736
  2. Bainton, N.J., P. Stead, S.R. Chhabra, B.W. Bycroft, G.P. Salmond, G.S. Stewart, and P. Williams. 1992. N-(3-oxo-hexanoyl)-Lhomoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288, 997-1004 https://doi.org/10.1042/bj2880997
  3. Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. 'Bergey's manual of systematic bacteriology,' Second Edition
  4. Bustin, S.A. 2000. Absolute quantification of mRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endoerinol. 25, 169-193 https://doi.org/10.1677/jme.0.0250169
  5. Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B.L. Bassler, and F.M. Hughson. 2002. Structural identification of a Bacteriol quorum sensing signal containing boron. Nature 415, 545-549 https://doi.org/10.1038/415545a
  6. Davies, D.G., M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costetton, and E.P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a Bacteriol biofilm. Science 280, 295-298 https://doi.org/10.1126/science.280.5361.295
  7. Eberhard, A. 1972. Inhibition and activation of Bacteriol luciferase synthesis. J. Bacteriol. 109, 1101-1105
  8. Fuqua, W.C. and S.C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176, 2796-2806 https://doi.org/10.1128/jb.176.10.2796-2806.1994
  9. Fuqua, W.C., S.C. Winans, and E.P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269-275 https://doi.org/10.1128/jb.176.2.269-275.1994
  10. Hastings, J.W. and K.H. Nealson. Bacteriol bioluminescence. 1997. Annu. Rev. Microbiol. 31, 549-595 https://doi.org/10.1146/annurev.mi.31.100177.003001
  11. De Kievit, T.R. and B.H. Iglewski. 2000. Bacteriol quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839-4849 https://doi.org/10.1128/IAI.68.9.4839-4849.2000
  12. Kumon, H., H. Hashimoto, M. Nishimura, K. Monden, and N. Ono. 2001. Catheter-associated urinary tract infections: impact of catheter materials on their management. Int. J. Urol. 17, 311-316
  13. Livark, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  14. Magnuson, R., J. Solomin, and A.D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207-216 https://doi.org/10.1016/0092-8674(94)90313-1
  15. Merle, V., J.M. Germain, H. Bugel, M. Nouvellon, J.F. Lemeland, and P. Czemichow. 2002. Nosocominal urinary tract infections in urologic patients: assessment of a prospective surveillance program including 10,000 patients. Eur. Urol. 41, 483-489 https://doi.org/10.1016/S0302-2838(02)00069-6
  16. Miller, M.B. and B.L. Bassler. 2001. Quorum sensing in bacteria. Ann. Rev. Microbiol. 55, 165-99 https://doi.org/10.1146/annurev.micro.55.1.165
  17. Nealson, K.H. and J.W. Hastings. 1979. Bacteriol bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 495-518
  18. Parsek, M.R. and E.P. Greenberg. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in association with higher organisms. Proc. Natl. Acad. Sci. USA 97, 8789-8793
  19. Pfaffl, M.W. 2001. A new rnathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 https://doi.org/10.1093/nar/29.9.e45
  20. Rumbaugh, K.P., J.A. Griswold, and A.N. Hamood. 2000. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2, 1721-1731 https://doi.org/10.1016/S1286-4579(00)01327-7
  21. Schaefer, A.L, D.L. Val, B.L. Hanzelka, J.E. Crona, and E.P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93, 9505-9509
  22. Silhavy, T.J., M.L. Berman, and L.W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory, New York, USA
  23. Surette, M.G. and B.L. Bassler. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 7046-7050
  24. Surette, M.G, M.B. Miller, and B.L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96, 1639-1644
  25. Tambyah, P.A. 2004. Catheter-associated urinary tract infections: diagnosis and prophylaxix. Int. J. Antimicrob. Agents. 24, S44-48 https://doi.org/10.1016/j.ijantimicag.2004.02.008
  26. Tourova, T.P. 2003. Copy nember of ribosomal operon in prokaryotes and its effect on phylogenetic analyses. Microbiol. 72, 389-402 https://doi.org/10.1023/A:1025045919260
  27. Whitehead, N.A., A.M. Barnard, H. Slater, N.J. Simpson, and G.P. Salmond. 2001. Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365-404 https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  28. Williams, S.C., E.X. Patter, N.L. Carty, J.A. Griswold, A.N. Hamood, and K.P. Rumbaugh. 2004. Pseudomonas aeruginosa autoinducer enters and fuctions in mammalian cells. J. Bacteriol. 186, 2281-2287 https://doi.org/10.1128/JB.186.8.2281-2287.2004