Antimicrobial Activity of N-Acetyl-Phenylalanine Produced from Streptomyces sp. G91353

Streptomyces sp. G91353이 생산하는 N-Acetyl-Phenylalanine의 항균활성

  • Kwon, Oh-Sung (Functional Metabolomics Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Park, Hae-Ryong (Department of Food Science & Biotechnology, Kyungnam University) ;
  • Yun, Bong-Sik (Functional Metabolomics Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Hwang, Ji-Hwan (Department of Food Science & Biotechnology, Kyungnam University) ;
  • Lee, Jae-Chan (Functional Metabolomics Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Park, Dong-Jin (Functional Metabolomics Research Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Kim, Chang-Jin (Functional Metabolomics Research Center, Korea Research Institute of Bioscience & Biotechnology)
  • 권오성 (한국생명공학연구원 대사체기능연구센터) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 윤봉식 (한국생명공학연구원 대사체기능연구센터) ;
  • 황지환 (경남대학교 식품생명학과) ;
  • 이재찬 (한국생명공학연구원 대사체기능연구센터) ;
  • 박동진 (한국생명공학연구원 대사체기능연구센터) ;
  • 김창진 (한국생명공학연구원 대사체기능연구센터)
  • Published : 2006.12.28

Abstract

For screening of the compounds exhibiting antimicrobial activities against the D-alanyl-D-alanine of Gram positive bacteria, approximately 2,500 actinomycetes isolated from soil were examined far antimicrobial activity. In consequence, we recently isolated the Streptomyces sp. G91353 strain produced an active compound, A91353, that inhibits the growth of Gram positive bacteria. A91353 was identified as N-acetyl-phenylalanine by various spectroscopic methods. The minimum inhibitory concentration (MIC) values of N-acetyl-phenylalanine on Gram positive bacteria such as Streptococcus pyogenes 308A, Streptococcus pyogenes 77A were determined as $50{\mu}g/ml$, respectively, but did not effect on Gram negative strains. These results indicate that N-acetyl-phenylalanine have an antimicrobial activity, which may be caused by the disturbance of D-alanyl-D-alanine synthesis.

토양 미생물인 방선균의 배양액으로부터 그람양성균에 대해 항균활성을 가지는 항균성 물질을 탐색하였다. 2,500주의 방선균 배양액을 탐색하여 항균성 물질 생산균주 Streptomyces sp. G9l353을 분리하였고, 그로부터 생산된 항균성 물질인 A91353을 분리 정제하였다. A91353은 다양한 구조해석 연구에 의하여 N-acetyl-phenylalanine으로 동정되었으며 Sc. pyogenes 308A, Sc. pyogenes 77A 등과 같은 그람양성균에 대해 선택적이며, D-alanyl-D-alanine과 상호작용 하여 그람양성균의 세포벽 합성을 저해하는 것으로 사료된다. N-acetyl-phenylalanine의 최소생육저해 농도는 그람양성균에 대해서 $50{\mu}g/ml$ 이었으며, 그람음성균에 대한 활성은 나타나지 않았다.

Keywords

References

  1. Bauer, A. W., M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45: 493
  2. Barna, J. C. J. and D. H. Williams. 1984. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann. Rev. Microbiol. 38: 339-357 https://doi.org/10.1146/annurev.mi.38.100184.002011
  3. Cheong, H. J. 1997. Vancomycin resistant enterococci. J. Korean Soc. Chemother. 15: 27-43
  4. Chesneau, O., A. Morvan, and N. E. Solh. 2000. Retrospective screening for heterogeneous vancomycin resistance in deverse Staphylococcus aureus clones disseminated in French hospitals. J. Antimicrob. Chemother. 45: 887-890 https://doi.org/10.1093/jac/45.6.887
  5. Cohen, S., M. M. Morita, and M. Bradford. 1991. A seven-tear experience with methicillin-resistant Staphylococcus aureus. Am. J. Med. 91(Suppli3B): 233S-237S https://doi.org/10.1016/0002-9343(91)90374-7
  6. Corti, A. and G. Cassani. 1985. Synthesis and Characterization of D-alanyl-D-alanine-agarose: A new bioselective adsorbent for affinity chromatography of glycopeptide antibiotics. Appl. Biochem. Biotechnol. 11: 101-110 https://doi.org/10.1007/BF02798542
  7. Corti, A., A. Soffientini, and G. Cassani. 1985. Binding of the glycopeptide antibiotic teicoplanin to D-alanyl-D-alanine-agarose: The effect of micellar aggregates. J. Appl. Biochem. 7: 133-137
  8. Ferraz, V., A. G. Duse, M. Kassel, A. D. Black, T. Ito, and K. Hiramatsu. 2000. Vancomycin-resistant Staphylococcus aureus occurs in South Africa. S. Afr. Med. J. 90: 1113
  9. Good, V. M., M. N. Gwynn, and D. J. Knowles. 1990. MM 45289, a potent glycopeptide antibiotic which interacts weakly with diacelyl-L-lysyl-D-alanyl-D-alanine. J. Antibiot. 43: 550-555
  10. Hackbarth, C. J. and H. F. Chambers. 1989. Methicillin resistant Staphylococci: Detection methods and treatment of infections. Antimicrob. Agents Chemother. 33: 995-999
  11. Hood, J., G. F. S. Edwards, B. Cosgrve, E. Curran, D. Morrison, and G. G. Gemmell. 2000. Vancomycin-intermediate Staphylococcus aureus at a Scottish hospital. J. Infect. 40: All
  12. Jevons, M. P. A., W. Coe, and M. T. Parker. 1963. Methicillin resistance in Staphylococcus. Lancet 1: 904
  13. Kim, M. N., C. H. Pai, J. H. Woo, J. S. Ryu, and K. Hiramatsu. 2000. Vancomycin intermediate Staphylococcus aureus in Korea. J. Clin. Microbiol. 38: 3879-3881
  14. Knox, R. and J. T. Smith. 1961. The nature of Penicillin resistance in Staphylococci. Lancet 2: 520-522
  15. Leclereq, R. E., E. Derlot, J. Duval, and P. Courvalin. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin. New Engl. J. Med. 319: 157-161
  16. Lee, M. J., D. S. Lim, M. S. Lee, W. H. Yoon, and C. H. Kim. 1997. Characterization of Streptomyces sp. AMLK-135 producing anti-MRSA antibiotics. J. Microbiol. Biotechnol. 7: 397-401
  17. Mandell, G. L., R. G. Douglas, and J. E. Bennett. 1990. Principles and practice of infectious disease, pp. 1489. 3rd ed. Churchill Livingstone, New york, U.S.A
  18. Maple, P. A., J. M. Hamilton-Miller, W. Brumfitt. 1989. World-wide antibiotic resistance in methicillin-resistant Staphylococcus aureus. Lancet. 1: 537-540
  19. Rhee, K. H., K. H. Chio, C. J. Kim, and C. H. Kim. 2001. Identification of Streptomyces sp. AMLK-335 producing antibiotic substance inhibitory to vancomycin-resistant Enterococci. J. Microbiol. Biotechnol. 11: 469-474
  20. Smith, T. L., M. L. Pearson, and K. R. Wilcox. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. New Engl. Med. 340: 489-501