Toxicity Evaluation of Organochloride Pesticide, Endosulfan and its Metabolites Using Microalgae

미세조류를 이용한 유기염소계 농약 Endosulfan 및 Endosulfan 분해산물의 독성평가

  • Sohn, Ho-Yong (Dept. of Food and Nutrition, Andong National University) ;
  • Kum, Eun-Joo (Dept. of Food and Nutrition, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Science, Andong National University) ;
  • Lee, Jung-Bok (Department of Biological Science, Andong National University) ;
  • Kwon, Gi-Seok (The School of Bioresource Sciences. Andong National University)
  • Published : 2006.12.28

Abstract

A growth inhibition assay using Chlorella sp. AG 10002 based on the OECD 201 standard test procedure was applied to the toxicity testing of endosulfan and its reported metabolites. Comparison of dry cell weight, optical density (OD) at 680 nm, and chlorophyll a concentration indicated that optical density at 680 nm of culture broth is convenient, rapid, and accurate method for cell growth. In this microalgae system, the $IC_{50}$ values of endosulfan, endosulfan sulfate, endosulfan lactone, and endosulfan ether were determined as 9.45, 18.8, 18.2 and 37.5 mg/L, respectively. In a while, endosulfan diol did not show a significant toxicity up to 50 mg/L. Since endosulfan is liable at acidic or alkaline conditions, treatment of endosulfan in pH 3, 4, and 11 for 3 days resulted in reduced toxicity, as expected. These results suggested that the microalgae system is useful to evaluate various toxic chemicals and provide a new notion for bioremediation of endosulfan in aqueous systems.

Keywords

References

  1. DeLorenzo, M. E., L. A. Taylor, S. A. Lund, P. L. Pennington, E. D. Strozier, and M. H. Fulton. 2002. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch. Environ. Contam. Toxicol. 42: 173-181 https://doi.org/10.1007/s00244-001-0008-3
  2. Fernandez, M. D., E. Cagigal, M. M. Vega, A. Urzelai, M. Babin, J. Pro, and J. V. Tarazona. 2005. Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicol. Environ. Saf. 62: 174-184 https://doi.org/10.1016/j.ecoenv.2004.11.013
  3. Ferrando, M. D., E. Sancho, E. and Andreu-Moliner. 1991. Comparative acute toxicities of selected pesticides to Anguilla anguilla. J. Environ. Sci. Health B. 26: 491-498 https://doi.org/10.1080/03601239109372751
  4. Jung, H., J.-H. Lee, E. Y. Kim, and H. J. Chae. 2005. Toxicity test of biodiesel and biodiesel-derived neopentyl polyol ester lubricant oil base using microalgae. Kor. J. Biotechnol. Bioeng. 20: 55-59
  5. Kasai, F., N. Takamura, and S. Hatakeyama. 1993. Effect of smetryne on growth of various fresh water algae taxa. Environ. Pollut. 79: 77-83 https://doi.org/10.1016/0269-7491(93)90180-V
  6. Kaur, I., R. P. Mathur, S. N. Tandon and P. Dureja. 1998. Persistence of endosulfan (technical) in water and soil. Environ. Tech. 19: 115-119 https://doi.org/10.1080/09593331908616663
  7. Kobbia, I. A., M. G., Battah, E. F. Shabana, and H. M. Eladel. 2001. Chlorophyll a fluorescence and photosynthetic activity as tools for the evaluation of simazine toxicity to Protosiphon botryoides and Anabaena variabilis. Ecotoxicol. Environ. Saf. 49: 101-105 https://doi.org/10.1006/eesa.2000.1955
  8. Kwon, G.-S., J.-E. Kim, T.-K. Kim, H.-Y. Sohn. S.-C. Koh. K.-S. Shin, and D.-G. Kim. 2002. Kebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS. Microbiol. Lett. 215: 255-259 https://doi.org/10.1111/j.1574-6968.2002.tb11399.x
  9. Kwon, G.-S., H.-Y. Sohn, K.-S. Shin, E. Kim, and B.-I. Seo. 2005. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Kelbsiella oxytoca KE-8. Appl. Microbial. Biotechnol. 67: 845-850 https://doi.org/10.1007/s00253-004-1879-9
  10. Lee, J.-B., H.-Y. Sohn, E.-J. Kum, K.-S. Shin, M.-S. Jo, J.-E. Kim, and G.-S. Kwon. 2006. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food. Chem. 54: 8824-8828 https://doi.org/10.1021/jf061276e
  11. Lee, S. E,. J. S. Kim, I. R. Kennedy, J. W. Park, G. S. Kwon, S. C. Koh, and J. E. Kim. 2003. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J. Agric. Food. Chem. 51: 1336-1340 https://doi.org/10.1021/jf0257289
  12. Lee, Y. D., I. B. Ko, and W. S. Shin. 2005. Toxicity assessment of biocide using Chlamydomonas reinhardtii. J. Kor. Soc Water Quality 21: 332-336
  13. Ma. J., L. Xu, S. Wang, R. Zheng, S. Jin, S. Huang, and Y. Huang. 2002. Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotoxicol. Environ. Saf. 51: 128-132 https://doi.org/10.1006/eesa.2001.2113
  14. Ma. J., S. Wang, P. Wang, L. Ma, X. Chen, and R. Xu. 2006. Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata. Ecotoxicol. Environ. Saf. 63: 456-462 https://doi.org/10.1016/j.ecoenv.2004.12.001
  15. Maul, J. D., J. B. Belden, B. A. Schwab, M. R. Whiles, B. Spears, J. L. Farris, and M. J. Lydy. 2006. Bioaccumulation and trophic transfer of polychlorinated biphenyls by aquatic and terrestrial insects to tree swallows (Tachycineta bicolor). Environ. Toxicol. Chem. 25: 1017-1025 https://doi.org/10.1897/05-309R.1
  16. OECD. 1984. OECD 201: Alga, growth inhibition test, Organization for Economic Cooperation and Development (OECD)
  17. Patin S. A. 1982. Pollution and biological resources of the oceans, butter worth. Scientific press, London, pp 80-109
  18. Sekine, Y., T. Yamamoto, T. Yumioka, S. Imoto, H. Kojima, and T. Matsuda. 2004. Cross-talk between endocrine-disrupting chemicals and cytokine signaling through estrogen receptors. Biochem. Biophys. Res. Comm. 315: 692-698 https://doi.org/10.1016/j.bbrc.2004.01.109
  19. Sethunathan, N. M. Megharaj, Z. L. Chen, B. D. Williams, G. Lewis, and R. Naidu. 2004. Algal degradation of a known endocrine disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate of liquid medium and soil. J. Agric. Food Chem. 52: 3030-3035 https://doi.org/10.1021/jf035173x
  20. Sohn, H.-Y., C.-S. Kwon, G.-S. Kwon, J. B. Lee, and E. Kim. 2004. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol. Lett. 151: 357-365 https://doi.org/10.1016/j.toxlet.2004.03.004
  21. Sohn, H.-Y., H.-J. Kim, E.-J. Kum, J.-B. Lee, and G.-S. Kwon, 2006. Simple and rapid evaluation system for endosulfan toxicity and selection of endosulfan detoxifying microorganism based on Lumbricus rubellus. Kor. J. Life. Sci. 16: 108-113 https://doi.org/10.5352/JLS.2006.16.1.108
  22. Sohn, H.-Y., H.-J. Kim, E.-J. Kum, M.-S. Cho, J.-B. Lee, J.-S. Kim and G.-S. Kwon. 2006. Toxcity evaluation of endocrine disrupting chemicals using human HepG2 cell line, Lumbricus rubellus and Saccahromyces cerevisiae. Kor. J. Life. Sci. 16: 919-924 https://doi.org/10.5352/JLS.2006.16.6.919
  23. Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O'Block, and L. R. Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36: 2149-2173 https://doi.org/10.1016/S0045-6535(97)10133-3
  24. Tandon, R. S., R. Lal, and V. V. Narayana Rao. 1988. Interaction of Endosulfan and malathion with blue-green algae Anabaena and Aulosira fertilissima. Environ. Pollut. 52: 1-9 https://doi.org/10.1016/0269-7491(88)90103-0