Statistical Optimization of the Lysis Agents for Gram-negative Bacterial Cells in a Microfluidic Device

  • Kim, Young-Bum (Department of Biological Engineering, Inha University) ;
  • Park, Ji-Ho (Department of Biological Engineering, Inha University) ;
  • Chang, Woo-Jin (Center for Advanced Bioseparation Technology, Inha University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University) ;
  • Kim, Eun-Ki (Department of Biological Engineering, Inha University) ;
  • Kim, Jin-Hwan (Department of Polymer Sci. & Eng., Sungkyunkwan University)
  • Published : 2006.08.30

Abstract

Through statistically designed experiments, lysis agents were optimized to effectively disrupt bacterial cells in a microfluidic device. Most surfactants caused the efficient lysis of Gram-positive microbes, but not of Gram-negative bacteria. A Plackett-Burman design was used to select the components that increase the efficiency of the lysis of the Gram-negative bacteria Escherichia coli. Using this experimental design, both lysozyme and benzalkonium chloride were shown to significantly increase the cell lysis efficiency, and ATP was extracted in proportion to the lysis efficiency. Benzalkonium chloride affected the cell membrane physically, while lysozyme destroyed the cell wall, and the amount of ATP extracted increased through the synergistic interaction of these two components. The two-factor response-surface design method was used to determine the optimum concentrations of lysozyme and benzalkonium chloride, which were found to be 202 and 99 ppm, respectively. The lysis effect was further verified by microscopic observations in the microchannels. These results indicate that Gram-negative cells can be lysed efficiently in a microfluidic device, thereby allowing the rapid detection of bacterial cells using a bioluminescence-based assay of the released ATP.

Keywords

References

  1. Farkade, V. D., S. Harrison, and A. B. Pandit (2005) Heat induced translocation of proteins and enzymes within the cell: An effective way to optimize the microbial cell disruption process. Biochem. Eng. J. 23: 247-257 https://doi.org/10.1016/j.bej.2005.01.001
  2. Chisti, Y. and M.-Y. Murray (1986) Disruption of microbial cell for intracellular products. Enzyme Microb. Technol. 8: 194-204 https://doi.org/10.1016/0141-0229(86)90087-6
  3. Belgrader, P., M. Okuzumi, F. Pourahmadi, D. A. Borkholder, and M. A. Northrup (2000) A microfluidic cartridge to prepare spores for PCR analysis. Biosens. Bioelectron. 14: 849-852 https://doi.org/10.1016/S0956-5663(99)00060-3
  4. Kulmala, S. and J. Suomi (2003) Current status of modern analytical luminescence methods. Anal. Chim. Acta 500: 21-69 https://doi.org/10.1016/j.aca.2003.09.004
  5. Selan, L., F. Berlutti, C. Passariello, M. C. Thaller, and G. Renzini (1992) Reliability of a bioluminescence ATP assay for detection of bacteria. J. Clin. Microbiol. 30: 1739-1742
  6. Venkateswaran, K., N. Hattori, M. T. La Duc, and R. Kern (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Methods 52: 367-377 https://doi.org/10.1016/S0167-7012(02)00192-6
  7. Thore, A., A. Lundin, and S. Ansehn (1983) Firefly luciferase ATP assay as a screening method for bacteriuria. J. Clin. Microbiol. 17: 218-224
  8. Thore, A., A. A. Lundin, and S. Bergman (1975) Detection of bacteruria by luciferase assay of adenosine triphosphate. J. Clin. Microbiol. 1: 1-8
  9. Lai-King, N. G., D. E. Taylor, and M. E. Stiles (1985) Estimation of Camphylobacter spp. in broth culture by bioluminescence assay of ATP. Appl. Environ. Microbiol. 49: 730-731
  10. Blum, L. J. (1997) Bio- and chemiluminescent sensors. pp. 37-68. World Scientific, Singapore
  11. Brock, T. D. (2002) Biology of Microbiology. pp. 56-57. Prentice Hall, Englewood Cliffs, NJ, USA
  12. Miller, T. E. (1969) Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme. J. Bacteriol. 98: 949-955
  13. Kim, S. K., B. S. Lee, J. G. Lee, H. J. Seo, and E. K. Kim (2003) Continuous water toxicity monitoring using immobilized Photobacterium phosphoreum. Biotechnol. Bioprocess Eng. 8: 147-150 https://doi.org/10.1007/BF02940271
  14. Effenhauser, C. S., G. J. M. Bruin, A. Paulus, and M. Ehrat (1997) Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal. Chem. 69: 3451-3457 https://doi.org/10.1021/ac9703919
  15. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70: 4974-4984 https://doi.org/10.1021/ac980656z
  16. Kim, H., H.-J. Eom, J. Lee, J. Han, and N. S. Han (2004) Statistical optimization of medium composition for growth of Leuconostoc citreum. Biotechnol. Bioprocess Eng. 9: 278-284 https://doi.org/10.1007/BF02942344
  17. Yucel, N. and H. Ulusoy (2006) A Turkey survey of hygiene indicator bacteria and Yersinia enterocolitica in raw milk and cheese samples. Food Control 17: 383-388 https://doi.org/10.1016/j.foodcont.2005.01.005
  18. Ho, J. (2002) Future of biological aerosol detection. Anal. Chim. Acta 457: 125-148 https://doi.org/10.1016/S0003-2670(01)01592-6
  19. L'Hostis, E., P. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooij, and M. Koudelka-Hep (2000) Microreactor and electrochemical detectors fabricated using Si and EPON SU-8. Sens. Actuators B Chem. 64: 156-162 https://doi.org/10.1016/S0925-4005(99)00500-6
  20. Roda, A., P. Pasini, M. Mirasoli, E. Michelini, and M. Guardigli (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol. 22: 295-303 https://doi.org/10.1016/j.tibtech.2004.03.011
  21. Li, C, W.-C. Lee, and K. H. Lee (2003) Affinity separations using microfabricated microfluidic devices: In situ photopolymerization and use in protein separations. Biotechnol. Bioprocess Eng. 8: 240-245 https://doi.org/10.1007/BF02942272