DOI QR코드

DOI QR Code

Molecular Phylogeny of Silk Producing Insects Based on Internal Transcribed Spacer DNA1

  • Mahendran, Botlagunta (Department of Biotechnology, Indian Institute of Technology) ;
  • Ghosh, Sudip K. (Department of Biotechnology, Indian Institute of Technology) ;
  • Kundu, Subhas C. (Department of Biotechnology, Indian Institute of Technology)
  • Received : 2006.02.07
  • Accepted : 2006.04.27
  • Published : 2006.09.30

Abstract

Silk moths are the best studied silk secreting insects and belong to the families Bombycidae and Saturniidae. The phylogenetic relationship between eleven silk producing insects was analyzed using the complete DNA sequence of the internal transcribed spacer DNA 1 locus. The PCR amplification and sequence analysis showed variation in length ranging from 138 bp (Antheraea polyphemus) to 911 bp (Hyalopora cecropia). Microsatellite sequences were found and was be used to distinguish Saturniidae and Bombycidae members. The nucleotide sequences were aligned manually and used for construction of phylogenetic trees based on Maximum parsimony and Maximum likelihood methods. The topology in both the approaches yielded a similar tree that supports the ancestral position of the Antheraea assama.

Keywords

References

  1. Akai, H. (2000) Cocoon filament characters and post-cocoon technology. International Journal of Wild Silkmoths and Silk. 5, 255-259.
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Avise, J. C. (1994) Molecular Markers, Natural History, and Evolution, Chapman & Hall, New York, USA.
  4. Banno, Y., Nakamura, T., Nagashima, E., Fujii, H. and Doira, H. (2004) M chromosome of the wild silkworm, Bombyx mandarina (n = 27), corresponds to two chromosomes in the domesticated silkworm, Bombyx mori (n = 28). Genome 47, 96-101. https://doi.org/10.1139/g03-112
  5. Bhagirath, T. H., Kundu, S. C. and Ibotombi, N. (1988) Ultimate karyotype of the hybrid between Antheraea pernyi and A. roylei. Sericologica. 28, 91-94.
  6. Cheng, T. C., Xia, Q. Y., Qian, J. F., Liu, C., Lin, Y., Zha, X. F. and Xiang, Z. H. (2004) Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochem. Mol. Biol. 34, 523-530. https://doi.org/10.1016/j.ibmb.2004.02.004
  7. Chu, K. H., Tam, P. F., Fung, C. H. and Chen, Q. C. (1997) A biological survey of ballast water in container ships entering Hong Kong. Hydrobiologia. 352, 201-206. https://doi.org/10.1023/A:1003067105577
  8. Coleman, A. W. and Vacquier, V. D. (2002) Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J. Mol. Evol. 54, 246-257. https://doi.org/10.1007/s00239-001-0006-0
  9. Datta, A., Ghosh, A. K. and Kundu, S. C. (2001) Differential expression of fibroin gene in developmental stages of silkworm A. mylitta (Saturniidae). Comparative Biochemistry and Physiology Part B. 129, 197-204. https://doi.org/10.1016/S1096-4959(01)00377-3
  10. Dover, G. A. (1982) Molecular drive: a cohesive mode of species evolution. Nature 295, 111-117.
  11. Duran, A. L., Yang, J., Wang, L. and Sumner, L. W. (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283-2293. https://doi.org/10.1093/bioinformatics/btg315
  12. Farris, J. S. (1989) The retention index and homoplasy excess. Systematic Zool. 38, 406-407. https://doi.org/10.2307/2992406
  13. Felsenstein, J. (1985) Congruence limits on phylogenies: An approach using the bootstrap. Evolution. 39, 783-791. https://doi.org/10.2307/2408678
  14. Gutell, R. R., Larson, N. and Woese, C. R. (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbio. Rev. 58, 10-26
  15. Haris, D. J. and Crandall, K. A. (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatel- lite studies. Mol. Biol. Evol. 17, 284-291 https://doi.org/10.1093/oxfordjournals.molbev.a026308
  16. Hugall, A., Stanton, J. and Moritz, C. (1999) Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol. Biol. Evol. 16, 157-164. https://doi.org/10.1093/oxfordjournals.molbev.a026098
  17. Hwang J. S., Lee J. S., Goo T. W., Yun E. Y., Sohn H. Y., Kim H. R. and Kwon O. Y. (1999a) Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondria DNA encoding of large and small rRNA. Genet. Anal. Biomol. Eng. 15, 223-228. https://doi.org/10.1016/S1050-3862(99)00008-X
  18. Hwang J. S., Lee J. S., Goo T. W., Kang H. A., Yun E. Y., Sohn H. Y., Kim H. R. and Kwon O. Y. (1999b) The comparative Molecular study between Bombycidae and Saturniidae Based on mtDNA RFLP and Cytochrome oxidase I Gene sequences: Implication for Molecular Evolution. Z. Naturforsch. 54, 587- 594.
  19. Jolly, M. S. (1985) Species differentiation in the genus Antheraea. Sericologia. 25, 84-94.
  20. Kluge, A. G. and Farris, J. S. (1969) Quantitative phyletics and the evolution of anurans. Syst Zool. 18, 1-32. https://doi.org/10.2307/2412407
  21. Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163. https://doi.org/10.1093/bib/5.2.150
  22. Kundu, S. C., Ibotombi, N. and Bhagirath, T. (1991) Synaptonemal complex karyotype of an Indian silkworm, Antheraea roylei. Sericologica. 31, 543-547.
  23. Li, A., Zhao, Q., Tang, S., Zhang, Z., Pan, S. and Shen, G. (2005) Molecular phylogeny of the domesticated silkworm, Bombyx mori, based on the sequences of mitochondrialcytochrome b genes. J. Genet. 84, 137-142. https://doi.org/10.1007/BF02715839
  24. Long, E. O. and David, B. (1980) Repeated genes in eukaryotes. Annual Ver. Biochem. 49, 727-764. https://doi.org/10.1146/annurev.bi.49.070180.003455
  25. Mahendran, B., Acharya, C., Dash R., Ghosh, S. K. and Kundu, S. C. (2006) Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene 370, 51-57. https://doi.org/10.1016/j.gene.2005.11.010
  26. Mahendran, B., Padhi, B. K., Ghosh, S. K. and Kundu, S. C. (2005) Genetic variation in ecoraces oftropical tasar silkworm, Antheraea mylitta D. using RFLP technique. Current Science 90, 100-103.
  27. Marcilla, A., Bargues, M. D., Ramsey, J. M., Magallon-Gastelum, E., Salazar-Schettino, P. M., Abad-Franch, F., Dujardin, J. P., Schofield, C. J. and Mas-Coma, S. (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol. Phylogenet. Evol. 18, 136-142. https://doi.org/10.1006/mpev.2000.0864
  28. Marquez, L. M., Miller, D. J., MacKenzie, J. B. and Van Oppen, M. J. H. (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol. Biol. Evol. 20, 1077-1086. https://doi.org/10.1093/molbev/msg122
  29. Nagaraju, J. and Jolly, M. S. (1985). Interspecific hybrids of Antheraea roylei and A. pernyi - a cytogeentic reassessment. Theor. Appl. Genet. 72, 269-273. https://doi.org/10.1007/BF00267003
  30. Nagaraju, J., Kathirvel, M., Muthulakshmi, M., Subbiah, E. V. and Kumar, L. D. (2002) FISSR-PCR: a simple and sensitive assay for high throughput genotyping and genetic mapping. Mol. Cell. Probes. 16, 67-72. https://doi.org/10.1006/mcpr.2001.0404
  31. Posada, D. and Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  32. Prasad, M. D., Muthulakshmi, M., Madhu, M., Archak, S., Mita, K. and Nagaraju, J. (2005) Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics. 169, 197-214. https://doi.org/10.1534/genetics.104.031005
  33. Reddy, K. D., Abraham, E. G. and Nagaraju, J. (1999) Microsatellites of the silkworm, Bombyx mori: abundance, polymorphism and strain characterization. Genome. 42, 1057-1065. https://doi.org/10.1139/gen-42-6-1057
  34. Sambrook, J. and Russell, D. W. (2001) Molecular cloning: A laboratory manual 3rd ed., Cold Spring Harbor Laboratory Press, New York, USA.
  35. Shimada, T., Kurimoto, Y. and Kobayashi, M. (1995) Phylogenetic relationship of silkmoths inferred from sequence data of the arylophorin gene. Mol. Phylogenet. Evol. 4, 223-234. https://doi.org/10.1006/mpev.1995.1021
  36. Sinha, A. K., Sinha, R. K., Goel, A. K., Sinha, B. R. R. Pd. and Thangavelu, K. (1994a) A review on the breeding and genetics aspect of tropical tasar silkworm, Antheraea mylitta. Proc. Conf. Cytology Genetics 4, 7-16.
  37. Smith, G. P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191, 528-535. https://doi.org/10.1126/science.1251186
  38. Strand, M., Prolla, T. A., Liskay, R. M. and Petes, T. D. (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274-276. https://doi.org/10.1038/365274a0
  39. Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Assoc, Sunderland, Massachusetts. Ver. 4.0b 10.
  40. Tan, Y. D., Wan, C., Zhu, Y., Lu, C., Xiang, Z. and Deng, H. W. (2001) An amplified fragment length polymorphism map of the silkworm. Genetics 157, 1277-1284.
  41. Therriault, T. W., Docker, M. F., Orlova, M. I., Heath, D. D. and MacIsaac, H. J. (2004) Molecular resolution of Dreissenidae (Mollusca: Bivalvia) including the first report of Mytilopsis leucophaetain the Black Sea basin. Mol. Phylogenet Evol. 30, 479-489. https://doi.org/10.1016/S1055-7903(03)00240-9
  42. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 221-244.
  43. Van Herwerden, L., Blair, D. and Agasuma, T. (1999) Intra-and interindividual variation in ITS1 of Paragonimus westermani (Trematoda: Digenea) and related species: implications for phylogenetic studies. Mol. Phylogenet. Evol. 12, 66-78.
  44. Vidigal. T. H. D. A., Spatz, L., Kissinge,r J., Redondo, R. F., Pires, E. R., Simpson, A. J. G. and Carvalho, O. S. (2004) Analysis of the first and second internal transcribed spacer sequences of the ribosomal DNA in Biomphalaria tenagophila Complex (Mollusca: Planorbidae). Mem Inst Oswaldo Cruz, Rio de Janeiro. 99, 153-158. https://doi.org/10.1590/S0074-02762004000200007
  45. Viguera, E., Canceill, D. and Ehrlich, S. D. (2001) Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 20, 2587-2595. https://doi.org/10.1093/emboj/20.10.2587
  46. Yasukochi, Y. (1998) A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics. 150, 1513-1525.
  47. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion vol.19, pp.8, 2008, https://doi.org/10.1007/s10856-008-3408-3
  2. The complete mitochondrial genome of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) vol.526, pp.2, 2013, https://doi.org/10.1016/j.gene.2013.05.048
  3. Genetic variation in ecoraces of tropical tasar silkworm, Antheraea mylitta using SSR markers vol.95, pp.4, 2016, https://doi.org/10.1007/s12041-016-0712-4
  4. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications vol.33, pp.10, 2008, https://doi.org/10.1016/j.progpolymsci.2008.08.002
  5. Non-bioengineered silk gland fibroin protein: Characterization and evaluation of matrices for potential tissue engineering applications vol.100, pp.6, 2008, https://doi.org/10.1002/bit.21835
  6. Exploration of the tight structural–mechanical relationship in mulberry and non-mulberry silkworm silks vol.4, pp.24, 2016, https://doi.org/10.1039/C6TB01049K
  7. Non-Bioengineered Silk Fibroin Protein 3D Scaffolds for Potential Biotechnological and Tissue Engineering Applications vol.8, pp.9, 2008, https://doi.org/10.1002/mabi.200800113
  8. Complete mitochondrial genome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae) and the phylogenetic relationship of Saturniidae species vol.545, pp.1, 2014, https://doi.org/10.1016/j.gene.2014.05.002
  9. Nonmulberry silk biopolymers vol.97, pp.6, 2012, https://doi.org/10.1002/bip.22024
  10. The complete mitochondrial genome of the Chinese oak silkmoth,Antheraea pernyi(Lepidoptera: Saturniidae) vol.40, pp.8, 2008, https://doi.org/10.1111/j.1745-7270.2008.00449.x