DOI QR코드

DOI QR Code

Conformational Study of Human Serum Albumin in Pre-denaturation Temperatures by Differential Scanning Calorimetry, Circular Dichroism and UV Spectroscopy

  • Rezaei-Tavirani, Mostafa (Faculty of Medicine, Medical University of Ilam) ;
  • Moghaddamnia, Seyed Hassan (Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences and Health Services) ;
  • Ranjbar, Bijan (Department of Biophysics, Faculty of Science, Tarbiat Modarres University) ;
  • Amani, Mojtaba (Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Marashi, Sayed-Amir (Department of Biotechnology, University College of Science, University of Tehran)
  • Received : 2006.01.07
  • Accepted : 2006.05.04
  • Published : 2006.09.30

Abstract

Thermal conformational changes of human serum albumin (HSA) in phosphate buffer, 10 mM at pH = 7 are investigated using differential scanning calorimetric (DSC), circular dichroism (CD) and UV spectroscopic methods. The results indicate that temperature increment from $25^{\circ}C$ to $55^{\circ}C$ induces reversible conformational changes in the structure of HSA. Conformational change of HSA are shown to be a three-step process. Interestingly, melting temperature of the last domain is equal to the maximum value of fever in pathological conditions, i.e. $42^{\circ}C$. These conformational alterations are accompanied by a mild alteration of secondary structures. Study of HSA-SDS (sodium dodecyl sulphate) interaction at $45^{\circ}C$ and $35^{\circ}C$ reveals that SDS affects the HSA structure at least in three steps: the first two steps result in more stabilization and compactness of HSA structure, while the last one induces the unfolding of HSA. Since HSA has a more affinity for SDS at $45^{\circ}C$ compared to $35^{\circ}C$, It is suggested that the net negative charge of HSA is decreased in fever, which results in the decrease of HSA-associated cations and plasma osmolarity, and consequently, heat removal via the increase in urine volume.

Keywords

References

  1. Bhattacharya, A. A., Grüne, T. and Curry, S. (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J. Mol. Biol. 303, 721-732. https://doi.org/10.1006/jmbi.2000.4158
  2. Bougie, I., Parent, A. and Bisaillon, M. (2004) Thermodynamics of ligand binding by the yeast mRNA-capping enzyme reveals different modes of binding. Biochem. J. 384, 411-420. https://doi.org/10.1042/BJ20041112
  3. Brown, J. R. (1977) Albumin structure, function and uses, Rosenoer, V. M., Oratz, M., Rothschild, M. A. (eds.), Pergamon Press, Oxford, UK.
  4. Carter, D. C. and Ho, J. X. (1994) Structure of serum albumin. Adv. Protein Chem. 45, 153-203. https://doi.org/10.1016/S0065-3233(08)60640-3
  5. Chen, Y. H., Yang, J. T. and Martinez, H. M. (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120-4131. https://doi.org/10.1021/bi00772a015
  6. Curry, S., Mandelkow, H., Brick, P. and Franks, N. (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Struct. Biol. 5, 827-835. https://doi.org/10.1038/1869
  7. Curry, S., Brick, P. and Franks, N. P. (1999) Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim. Biophys. Acta 1441, 131-140. https://doi.org/10.1016/S1388-1981(99)00148-1
  8. Dill, K. A., Alonso, D. O. V. and Hutchinson, K. (1989) Thermal stabilities of globular proteins, Biochemistry 28, 5439-5449. https://doi.org/10.1021/bi00439a019
  9. Farruggia, B. and Pico, G. A. (1999) Thermodynamic features of the chemical and thermal denaturations of human serum albumin. Int. J. Biol. Macromol. 26, 317-323. https://doi.org/10.1016/S0141-8130(99)00054-9
  10. Farruggia, B., Rodriguez, F., Rigatuso, R., Fidelio, G. and Pico G. (2001) The participation of human serum albumin domains in chemical and thermal unfolding. J. Protein Chem. 20, 81-89. https://doi.org/10.1023/A:1011000317042
  11. Flora, K., Brennan, J. D., Baker, G. A., Doody, M. A and Bright, F. V. (1998) Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys. J. 75, 1084-1096. https://doi.org/10.1016/S0006-3495(98)77598-8
  12. Galisteo, M., Mateo, P. and Sanchez-Ruiz, J. (1991) Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase. Biochemistry 30, 2061-2066. https://doi.org/10.1021/bi00222a009
  13. Gelamo, E. L. and Tabak, M. (2000) Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochimica Acta A 56, 2255-2271. https://doi.org/10.1016/S1386-1425(00)00313-9
  14. Giancola, C., De Sena, C., Fessas, D., Graziano, G. and Barone, G. (1997) DSC studies on bovine serum albumin denaturation: Effects of ionic strength and SDS concentration. Int. J. Biol. Macromol. 20, 193-204. https://doi.org/10.1016/S0141-8130(97)01159-8
  15. He, X. M. and Carter, D. C. (1992) Atomic structure and chemistry of human serum albumin. Nature 358, 209-215. https://doi.org/10.1038/358209a0
  16. Ikeguchi, M., Sugai, S., Fujino, M., Sugawara, T. and Kuwajima K. (1992) Contribution of the 6-120 disulfide bond of $\alpha$-lactalbumin to the stabilities of its native and molten globule states. Biochemistry 31, 12695-12700.
  17. Kragh-Hansen, U. (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33, 17-53.
  18. Kragh-Hansen, U., Hellec, F., de Foresta, B., le Maire, M. and Moller J. V. (2001) Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins. Biophys. J. 80, 2898-2911. https://doi.org/10.1016/S0006-3495(01)76255-8
  19. Michnik, A. (2003) Thermal stability of bovine serum albumin: DSC study. J. Therm. Anal. Cal. 71, 509-519. https://doi.org/10.1023/A:1022851809481
  20. Moosavi-Movahedi, A. A., Naderi, G. A. and Farzami, B. (1994) The denaturation behaviour of calmodulin in sodium n-dodecyl sulphate, dodecyl trimethyl ammonium bromide, guanidine hydrochloride and urea. Thermochimica Acta 239, 61-71. https://doi.org/10.1016/0040-6031(94)87056-X
  21. Moosavi-Movahedi, A. A., Nazari, K. and Saboury, A. A. (1997) Denaturation of horseradish peroxidase with SDS and DTAB, Colloids Surf. B. Biointerfaces 9, 123-130. https://doi.org/10.1016/S0927-7765(97)00016-7
  22. Moosavi-Movahedi, A. A. (2005) Thermodynamics of protein denaturation by sodium dodecyl sulfate. J. Iran Chem. Soc. 2, 189-196. https://doi.org/10.1007/BF03245921
  23. Nielsen, A. D., Borch, K. and Westh, P. (2000) Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochim. Biophys. Acta 1479, 321-331. https://doi.org/10.1016/S0167-4838(00)00012-1
  24. Pace, C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266-280. https://doi.org/10.1016/0076-6879(86)31045-0
  25. Pace, C. N. (1990) Conformational stability of globular proteins. Trends Biochem. Sci. 15, 14-17. https://doi.org/10.1016/0968-0004(90)90124-T
  26. Pico, G. A. (1997) Thermodynamic features of the thermal unfolding of human serum albumin. Int. J. Biol. Macromol. 20, 63-73. https://doi.org/10.1016/S0141-8130(96)01153-1
  27. Privalov, P. L. (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem. 35, 1-104. https://doi.org/10.1016/S0065-3233(08)60468-4
  28. Privalov, P. L. (1996) Intermediate states in protein folding. J. Mol. Biol. 258, 707-725. https://doi.org/10.1006/jmbi.1996.0280
  29. Privalov, P. L. and Potekhin, S. A. (1986) Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4-51. https://doi.org/10.1016/0076-6879(86)31033-4
  30. Ptitsyn, O. B. (1994) Kinetic and equilibrium intermediates in protein folding. Protein Eng. 7, 593-596. https://doi.org/10.1093/protein/7.5.593
  31. Ptitsyn, O. B. (1995) Structures of folding intermediates. Curr. Opin. Struct. Biol. 5, 74-78. https://doi.org/10.1016/0959-440X(95)80011-O
  32. Redfield, C., Smith, R. A. G. and Dobson, C. M. (1994) Structural characterization of a highly-ordered 'molten globule' at low pH. Nat. Struct. Biol. 1, 23-29. https://doi.org/10.1038/nsb0194-23
  33. Rezaei-Tavirani, M., Moosavi-Movahedi, A. A., Saboury, A. A., Hakimelahi, G. H., Ranjbar, B. and Housaindokht M. R. (2002) Thermodynamic domain analysis of fresh and incubated human apotransferrin. Thermochimica Acta 383, 103-108. https://doi.org/10.1016/S0040-6031(01)00684-0
  34. Saboury, A. A., Hosseini-Kishani, F., Rezaei-Tawirani, M. and Ranjbar, B. (2003) Thermodynamic studies on the interaction of nickel with human serum albumin, Progress Biochem. Biophys. 30, 732-737.
  35. Santoro, M. and Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063-8068. https://doi.org/10.1021/bi00421a014
  36. Shaklai, N., Garlick, R. L. and Bunn, H. F. (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J. Biol. Chem. 259, 3812-3817.
  37. Sugio, S., Kashima, A.,. Mochizuki, S., Noda, M. and Kobayashi, K. (1999) Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 12, 439-446. https://doi.org/10.1093/protein/12.6.439
  38. Tanford, C. (1968) Protein denaturation. Adv. Protein Chem. 23, 121-282. https://doi.org/10.1016/S0065-3233(08)60401-5
  39. Wallevik, K. (1973) Reversible denaturation of human serum albumin by pH, temperature, and guanidine hydrochloride followed by optical rotation. J. Biol. Chem. 248, 2650-2655.
  40. Wetlaufer, D. B. (1981) Folding of protein fragments, Adv. Protein Chem. 34, 61-92. https://doi.org/10.1016/S0065-3233(08)60518-5
  41. Wetzel, R., Becker, M., Behlke, J., Billwitz, H., Bohm, S., Ebert, B., Hamann, H., Krumbiegel, J. and Lassmann, G. (1980) Temperature behaviour of human serum albumin. Eur. J. Biochem. 104, 469-478. https://doi.org/10.1111/j.1432-1033.1980.tb04449.x
  42. Yamasaki, M., Yano, H. and Aoki, K. (1992) Differential scanning calorimetric studies on bovine serum albumin: III. Effect of sodium dodecyl sulphate. Int. J. Biol. Macromol. 14, 305-312. https://doi.org/10.1016/S0141-8130(05)80070-4

Cited by

  1. DSC and spectroscopic investigation of human serum albumin adsorbed onto silica nanoparticles functionalized by amino groups vol.100, pp.3, 2010, https://doi.org/10.1007/s10973-009-0604-4
  2. Human serum albumin binding ibuprofen: A 3D description of the unfolding pathway in urea vol.147, pp.3, 2010, https://doi.org/10.1016/j.bpc.2010.01.002
  3. Influence of MLS laser radiation on erythrocyte membrane fluidity and secondary structure of human serum albumin vol.388, pp.1-2, 2014, https://doi.org/10.1007/s11010-013-1917-y
  4. Elucidating the mode of action of urea on mammalian serum albumins and protective effect of sodium dodecyl sulfate vol.441, pp.3, 2013, https://doi.org/10.1016/j.bbrc.2013.10.055
  5. An in-depth kinetics study of chemically modified human serum albumin aggregation and fibrillation vol.6, pp.109, 2016, https://doi.org/10.1039/C6RA20303E
  6. Bromophenol Blue Binding as a Probe to Study Urea and Guanidine Hydrochloride Denaturation of Bovine Serum Albumin vol.144, pp.1, 2008, https://doi.org/10.1093/jb/mvn036
  7. The thermal and storage stability of bovine haemoglobin by ultraviolet–visible and circular dichroism spectroscopies vol.6, pp.4, 2016, https://doi.org/10.1016/j.jpha.2016.02.004
  8. Effects of Selective Biotinylation on the Thermodynamic Stability of Human Serum Albumin vol.07, pp.01, 2016, https://doi.org/10.4236/jbpc.2016.71002
  9. Comparative study of the effects of the structurally similar flavonoids quercetin and taxifolin on the therapeutic behavior of alprazolam vol.94, pp.5, 2016, https://doi.org/10.1139/cjc-2015-0177
  10. Spectroscopic studies on pH- and thermally induced conformational changes of Bovine Serum Albumin adsorbed onto gold nanoparticles vol.217, pp.2-3, 2011, https://doi.org/10.1016/j.jphotochem.2010.11.012
  11. Albumin–alginate-coated microspheres: Resistance to steam sterilization and to lyophilization vol.344, pp.1-2, 2007, https://doi.org/10.1016/j.ijpharm.2007.05.053
  12. Cationic Spin Probe Reporting on Thermal Denaturation and Complexation–Decomplexation of BSA with SDS. Potential Applications in Protein Purification Processes vol.118, pp.38, 2014, https://doi.org/10.1021/jp5071055
  13. Single-Cell Western Blotting after Whole-Cell Imaging to Assess Cancer Chemotherapeutic Response vol.86, pp.20, 2014, https://doi.org/10.1021/ac502932t
  14. Effects of sodium phosphate buffer on horseradish peroxidase thermal stability vol.93, pp.2, 2008, https://doi.org/10.1007/s10973-007-8407-y
  15. Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: Structure and biological evaluation vol.46, pp.5, 2011, https://doi.org/10.1016/j.ejmech.2011.02.012
  16. Characterizing the binding of nucleotide ATP on serum albumin by31P NMR diffusion vol.90, pp.5, 2012, https://doi.org/10.1139/v2012-011
  17. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins vol.173, 2017, https://doi.org/10.1016/j.saa.2016.10.040
  18. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions vol.24, pp.2, 2013, https://doi.org/10.1007/s10856-012-4816-y
  19. Stability of proteins with multi-state unfolding behavior vol.55, pp.7, 2012, https://doi.org/10.1007/s11426-012-4642-6
  20. The effect of metals on SDS-induced partially folded states of CopC vol.19, pp.3, 2014, https://doi.org/10.1007/s00775-013-1071-8
  21. Unfolding properties of recombinant human serum albumin products are due to bioprocessing steps vol.31, pp.1, 2015, https://doi.org/10.1002/btpr.1996
  22. Biophysical studies on the interaction of platinum(II) complex containing antiviral drug ribavirin with human serum albumin vol.160, 2016, https://doi.org/10.1016/j.jphotobiol.2016.05.006
  23. The stability and the metal ions binding properties of mutant A85M of CopC vol.161, 2016, https://doi.org/10.1016/j.jphotobiol.2016.06.006
  24. Electrochemical surface oxide characteristics of metal nanoparticles (Mn, Cu and Al) and the relation to toxicity vol.212, 2016, https://doi.org/10.1016/j.electacta.2016.07.017
  25. Binding of rare earth metal complexes with an ofloxacin derivative to bovine serum albumin and its effect on the conformation of protein vol.131, pp.8, 2011, https://doi.org/10.1016/j.jlumin.2011.03.025
  26. Reversible two-step unfolding of heme–human serum albumin: a 1H-NMR relaxometric and circular dichroism study vol.14, pp.2, 2009, https://doi.org/10.1007/s00775-008-0439-7
  27. Anisotropy resolved multidimensional emission spectroscopy (ARMES): A new tool for protein analysis vol.886, 2015, https://doi.org/10.1016/j.aca.2015.06.011
  28. Risperidone interacts with serum albumin forming complex vol.33, pp.2, 2012, https://doi.org/10.1016/j.etap.2011.11.007
  29. Pre-denaturing transitions in human serum albumin probed using time-resolved phosphorescence vol.124, 2014, https://doi.org/10.1016/j.saa.2014.01.073
  30. Binding of Sulpiride to Seric Albumins vol.17, pp.1, 2016, https://doi.org/10.3390/ijms17010059
  31. A theoretical study of the unfolding pathway of reduced Human serum albumin vol.21, pp.5, 2015, https://doi.org/10.1007/s00894-015-2659-4
  32. Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles vol.14, pp.10, 2012, https://doi.org/10.1007/s11051-012-1174-0
  33. Interaction of a Hydrophobic-Functionalized PAMAM Dendrimer with Bovine Serum Albumin: Thermodynamic and Structural Changes vol.30, pp.19, 2014, https://doi.org/10.1021/la501129y
  34. Optical Spectroscopic Exploration of Binding of Cochineal Red A with Two Homologous Serum Albumins vol.60, pp.14, 2012, https://doi.org/10.1021/jf205219w
  35. Light scattering study of human serum albumin in pre-denaturation: Relation to dynamic transition in water at 42°C vol.176, 2012, https://doi.org/10.1016/j.molliq.2012.09.012
  36. Comparative binding study of anti-tuberculosis drug pyrazinamide with serum albumins vol.6, pp.89, 2016, https://doi.org/10.1039/C6RA10487H
  37. Effect of prototypic drugs ibuprofen and warfarin on global chaotropic unfolding of human serum heme-albumin: A fast-field-cycling 1H-NMR relaxometric study vol.129, pp.1, 2007, https://doi.org/10.1016/j.bpc.2007.05.002
  38. Measurement of protein denaturation in human synovial fluid and its analogs using differential scanning calorimetry vol.102, pp.1, 2010, https://doi.org/10.1007/s10973-010-0794-9
  39. Fructose restrains fibrillogenesis in human serum albumin vol.61, 2013, https://doi.org/10.1016/j.ijbiomac.2013.08.006
  40. Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA vol.78, pp.1, 2011, https://doi.org/10.1016/j.saa.2010.11.018
  41. Gold Nanoparticle-Based Facile Detection of Human Serum Albumin and Its Application as an INHIBIT Logic Gate vol.7, pp.17, 2015, https://doi.org/10.1021/acsami.5b01552
  42. Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecin analog irinotecan hydrochloride vol.34, pp.7, 2016, https://doi.org/10.1080/07391102.2015.1082504
  43. In Silico Study of Global Structure of Human Serum Albumin vol.4, pp.4, 2012, https://doi.org/10.1080/19430892.2012.739454
  44. Conformational Fluctuation Dynamics of Domain I of Human Serum Albumin in the Course of Chemically and Thermally Induced Unfolding Using Fluorescence Correlation Spectroscopy vol.118, pp.20, 2014, https://doi.org/10.1021/jp502762t
  45. The effect of structural alterations of three mammalian serum albumins on their binding properties vol.1044, 2013, https://doi.org/10.1016/j.molstruc.2012.12.049