DOI QR코드

DOI QR Code

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon (Department of Molecular Biology, Dankook University) ;
  • Jang, Young-Joo (Laboratory of Biochemistry, The School of Dentistry, Dankook University)
  • Received : 2006.04.26
  • Accepted : 2006.07.20
  • Published : 2006.11.30

Abstract

Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Keywords

References

  1. Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J. C. and Doree, M. (1998) The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J. Cell Sci. 111, 1751-1757
  2. Arnaud, L., Pines, J. and Nigg, E. A. (1998) GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107, 424-429 https://doi.org/10.1007/s004120050326
  3. Bahler, J., Steever, A. B., Wheatley, S., Wang, Y., Pringle, J. R., Gould, K. L. and McCollum, D. (1998) Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J. Cell Biol. 143, 1603-1616 https://doi.org/10.1083/jcb.143.6.1603
  4. Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745-2752 https://doi.org/10.1128/MCB.7.8.2745
  5. Descombes, P. and Nigg, E. A. (1998) The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J. 17, 1328-1335 https://doi.org/10.1093/emboj/17.5.1328
  6. Donaldson, M. M., Tavares, A. A., Hagan, I. M., Nigg, E. A. and Glover, D. M. (2001) The mitotic roles of Polo-like kinase. J. Cell Sci. 114, 2357-2358
  7. Feng, Y., Hodge, D. R., Palmieri, G., Chase, D. L., Longo, D. L. and Ferris, D. K. (1999) Association of polo-like kinase with alpha-, beta- and gamma-tubulins in a stable complex. Biochem. J. 339, 435-442 https://doi.org/10.1042/0264-6021:3390435
  8. Gietz, D., St Jean, A., Woods, R. A. and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425 https://doi.org/10.1093/nar/20.6.1425
  9. Glover, D. M., Ohkura, H. and Tavares, A. (1996) Polo kinase: the choreographer of the mitotic stage? J. Cell Biol. 135, 1681-1684 https://doi.org/10.1083/jcb.135.6.1681
  10. Hudson, J. W., Kozarova, A., Cheung, P., Macmillan, J. C., Swallow, C. J., Cross, J. C. and Dennis, J. W. (2001) Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441-446 https://doi.org/10.1016/S0960-9822(01)00117-8
  11. Jackman, M., Lindon, C., Nigg, E. A. and Pines, J. (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat. Cell Biol. 5, 143-148 https://doi.org/10.1038/ncb918
  12. Jang, Y. J., Lin, C. Y., Ma, S. and Erikson, R. L. (2002a) Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl. Acad. Sci. U.S.A 99, 1984-1989 https://doi.org/10.1073/pnas.042689299
  13. Jang, Y. J., Ma, S., Terada, Y. and Erikson, R. L. (2002b) Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J. Biol. Chem. 277, 44115-44120 https://doi.org/10.1074/jbc.M202172200
  14. Jang, Y. J., Ji, J. H., Ahn, J. H., Hoe, K. L., Won, M., Im, D. S., Chae, S. K., Song, S. and Yoo, H. S. (2004) Polo-box motif targets a centrosome regulator, RanGTPase. Biochem. Biophys. Res. Commun. 325, 257-264 https://doi.org/10.1016/j.bbrc.2004.10.023
  15. Karaiskou, A., Jessus, C., Brassac, T. and Ozon, R. (1999) Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J. Cell Sci. 112, 3747-3756
  16. Lane, H. A. and Nigg, E. A. (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701-1713 https://doi.org/10.1083/jcb.135.6.1701
  17. Lee, K. S., Grenfell, T. Z., Yarm, F. R. and Erikson, R. L. (1998) Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA 95, 9301-9306 https://doi.org/10.1073/pnas.95.16.9301
  18. Liu, X. and Erikson, R. L. (2003) Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc. Natl. Acad. Sci. USA 100, 5789-5794 https://doi.org/10.1073/pnas.1031523100
  19. Liu, X., Lin, C. Y., Lei, M., Yan, S., Zhou, T. and Erikson, R. L. (2005) CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol. Cell. Biol. 25, 4993-5010 https://doi.org/10.1128/MCB.25.12.4993-5010.2005
  20. Logarinho, E. and Sunkel, C. E. (1998) The Drosophila POLO kinase localises to multiple compartments of the mitotic apparatus and is required for the phosphorylation of MPM2 reactive epitopes. J. Cell Sci. 111, 2897-2909
  21. May, K. M., Reynolds, N., Cullen, C. F., Yanagida, M. and Ohkura, H. (2002) Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis. J. Cell Biol. 156, 23-28 https://doi.org/10.1083/jcb.200106150
  22. Moutinho-Santos, T., Sampaio, P., Amorim, I., Costa, M. and Sunkel, C. E. (1999) In vivo localisation of the mitotic POLO kinase shows a highly dynamic association with the mitotic apparatus during early embryogenesis in Drosophila. Biol. Cell 91, 585-596 https://doi.org/10.1016/S0248-4900(00)88523-8
  23. Mulvihill, D.P., Petersen, J., Ohkura, H., Glover, D. M. and Hagan, I. M. (1999) Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol. Biol. Cell 10, 2771-2785 https://doi.org/10.1091/mbc.10.8.2771
  24. Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E. and Nishida, E. (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277-25280 https://doi.org/10.1074/jbc.C300126200
  25. Ohkura, H., Hagan, I. M. and Glover, D. M. (1995) The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9, 1059-1073 https://doi.org/10.1101/gad.9.9.1059
  26. Qian, Y. W., Erikson, E., Li, C. and Maller, J. L. (1998) Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18, 4262-4271 https://doi.org/10.1128/MCB.18.7.4262
  27. Reynolds, N. and Ohkura, H. (2003) Polo boxes form a single functional domain that mediates interactions with multiple proteins in fission yeast polo kinase. J. Cell Sci. 116, 1377-1387 https://doi.org/10.1242/jcs.00314
  28. Seong, Y. S., Kamijo, K., Lee, J. S., Fernandez, E., Kuriyama, R., Miki, T. and Lee, K. S. (2002) A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282-32293 https://doi.org/10.1074/jbc.M202602200
  29. Shirayama, M., Zachariae, W., Ciosk, R. and Nasmyth, K. (1998) The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17, 1336-1349 https://doi.org/10.1093/emboj/17.5.1336
  30. Simizu, S. and Osada, H. (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat. Cell Biol. 2, 852-854 https://doi.org/10.1038/35041102
  31. Song, S., Grenfell, T. Z., Garfield, S., Erikson, R. L. and Lee, K. S. (2000) Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell. Biol. 20, 286-298 https://doi.org/10.1128/MCB.20.1.286-298.2000
  32. Spankuch-Schmitt, B., Bereiter-Hahn, J., Kaufmann, M., and Strebhardt, K. (2002). Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J. Natl. Cancer Inst. 94, 1863-1877 https://doi.org/10.1093/jnci/94.24.1863
  33. Sumara, I., Vorlaufer, E., Stukenberg, P. T., Kelm, O., Redemann, N., Nigg, E. A. and Peters, J. M. (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Pololike kinase. Mol. Cell 9, 515-525 https://doi.org/10.1016/S1097-2765(02)00473-2
  34. Sumara, I., Gimenez-Abian, J. F., Gerlich, D., Hirota, T., Kraft, C., De La Torre, C., Ellenberg, J., and Peters, J. M. (2004) Roles of Polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712-1722 https://doi.org/10.1016/j.cub.2004.09.049
  35. Sunkel, C. E. and Glover, D. M. (1988) polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25-38
  36. Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A. and Nishida, E. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410, 215-220 https://doi.org/10.1038/35065617
  37. Toyoshima-Morimoto, F., Taniguchi, E. and Nishida, E. (2002) Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341-348 https://doi.org/10.1093/embo-reports/kvf069
  38. Van Vugt, M. A., Van De Weerdt, B. C., Vader, G., Janssen, H., Calafat, J., Klompmaker, R., Wolthuis, R. M. and Medema, R. H. (2004) Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for APC/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841-36854 https://doi.org/10.1074/jbc.M313681200
  39. Yarm, F. R. (2002) Plk phosphorylation regulates the microtubulestabilizing protein TCTP. Mol. Cell. Biol. 22, 6209-6221 https://doi.org/10.1128/MCB.22.17.6209-6221.2002
  40. Zhou, T., Aumais, J. P., Liu, X., Yu-Lee, L. Y. and Erikson, R. L. (2003) A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5, 127-138 https://doi.org/10.1016/S1534-5807(03)00186-2

Cited by

  1. Phosphorylation of Ran-binding Protein-1 by Polo-like Kinase-1 Is Required for Interaction with Ran and Early Mitotic Progression vol.286, pp.38, 2011, https://doi.org/10.1074/jbc.M111.255620
  2. APC/CCdh1-dependent degradation of Cdc20 requires a phosphorylation on CRY-box by Polo-like kinase-1 during somatic cell cycle vol.436, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.04.073
  3. RNA-binding protein RBM8A (Y14) and MAGOH localize to centrosome in human A549 cells vol.141, pp.1, 2014, https://doi.org/10.1007/s00418-013-1135-4
  4. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Plk1 to centrosomes vol.23, pp.11, 2013, https://doi.org/10.1038/cr.2013.127