Isolation and Characterization of Phytochemical Constituents from Soybean (Glycine max L. Merr.)

  • Lee, Jin-Hwan (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Baek, In-Youl (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Kang, Nam-Suk (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Ko, Jong-Min (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Han, Won-Young (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Kim, Hyun-Tae (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Oh, Ki-Won (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Suh, Duck-Yong (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Ha, Tae-Joung (Yeongnam Agricultural Research Institute, National Institute of Crop Science, RDA) ;
  • Park, Ki-Hun (Division of Applied Life Science (BK21 program), Department of Agricultural Chemistry, Research Institute of Life Science, Gyeongsang National University)
  • Published : 2006.06.30

Abstract

Four flavonoids 1-4 and one phytosterol 5 were isolated from methanol extract of Taekwangkong, one of the soybean cultivars, and the structures of these compounds were fully characterized by physical and spectral analysis. The content of compounds 1-4 as determined by $C_{18}$ reversed phase HPLC (high-performance liquid chromatography) coupled with diode-array detector were 12.1, 624.6, 18.0, and $219.6\;{\mu}g/g$, respectively, and the total phenolic content of this cultivar was measured as 3.7 mg gallic acid equivalent per g dry material (GAB/g). Also, compound 1 showed strong radical scavenging activity in the 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay ($IC_{50}\;=\;47.6\;{\mu}M$), five-fold higher than seen in the 1,1-diphenyl-2-picrylliydrazyl (DPPH) assay. These results lead to the conclusion that soybean not only has many phytoestrogens but also has potent antioxidant activity.

Keywords

References

  1. Miksicek RJ. Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 44: 37-43 (1993)
  2. Miksicek RJ. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J. Steroid Biochem. 49: 153-160 (1994) https://doi.org/10.1016/0960-0760(94)90005-1
  3. Miksicek RJ. Estrogenic flavonoids: structural requirements for biological activity. P. Soc. Exp. Biol. Med. 208: 44-50 (1995)
  4. Cornwell T, Cohick W, Raskin I. Dietary phytoestrogens and health. Phytochemistry 65: 995-1016 (2004) https://doi.org/10.1016/j.phytochem.2004.03.005
  5. Liu J, Burdette JE, Xu H, Gu C, Bhat KPL, van Breemen RB, Booth N, Constantinou AI, Pezzuto JM, Fong HHS, Farnsworth NR, Bolton JL. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agric. Food Chem. 49: 2472-2479 (2001) https://doi.org/10.1021/jf0014157
  6. Franke AA, Custer LJ, Cerna CM, Narala KK. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913 (1994) https://doi.org/10.1021/jf00045a015
  7. Messina M, Messina V. Soyfoods, soybean isoflavones, and bone health: a brief overview. J. Renal Nutr. 10: 63-68 (2000) https://doi.org/10.1016/S1051-2276(00)90001-3
  8. Davis SR, Dalais FS, Simpson AL. Murkies, phytoestrogens in health and disease. Recent Prog. Horm. Res. 54: 185-211 (1999)
  9. Ghem BD, Mcandrews JM, Chien PY, Jameson JL. Reservatrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. P. Natl. Acad. Sci. USA 94: 14138-14143 (1997)
  10. Price K, Fenwick G. Naturally occurring oestrogens on foods-a review. Food Addit. Contam. 2: 73-106 (1985) https://doi.org/10.1080/02652038509373531
  11. Rosenblum ER, Stauber RE, Van Thiel DH, Campbell IM, Gavaler JS. Assessment of the estrogenic activity of phytoestrogens isolated from bourbon and beer, alcohol. Clin. Exp. Res. 17: 1207-1209 (1993) https://doi.org/10.1111/j.1530-0277.1993.tb05230.x
  12. Tham DM, Gardner CD, Haskell WL. Potential health benefits of dietary phytoestrogens: a review of clinical, epidemiological, and mechanistic evidence. J. Clin. Endocr. Metab. 83: 2223-2235 (1998) https://doi.org/10.1210/jc.83.7.2223
  13. Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence, the adventist health study (United States). Cancer Cause Control 9: 553-557 (1998) https://doi.org/10.1023/A:1008819500080
  14. Messina M. Soyfoods and soybean phyto-oestrogens (isoflavones) as possible alternatives to hormone replacement therapy (HRT). Eur. J. Cancer 36: S71-S72 (2000) https://doi.org/10.1016/S0959-8049(00)00233-1
  15. Adlercreutz H. Phytoestrogens and breast cancer. J. Steroid Biochem. 83: 113-118 (2002) https://doi.org/10.1016/S0960-0760(02)00273-X
  16. Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Science 65: 337-353 (1999) https://doi.org/10.1016/S0024-3205(99)00120-4
  17. Havsteen B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32: 1141-1148 (1983) https://doi.org/10.1016/0006-2952(83)90262-9
  18. Javanmardi JC, Locke SE, Vivanco JM. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83: 547-550 (2003) https://doi.org/10.1016/S0308-8146(03)00151-1
  19. Breimer LH. Ionizing radiation-induced mutagenesis. Brit. J. Cancer 57: 6-18 (1998)
  20. McCord JM. The evolution of free radicals and oxidative stress. Am. J. Med. 108: 652-659 (2000) https://doi.org/10.1016/S0002-9343(00)00412-5
  21. Gibson GE, Zhang H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem. Int. 40: 493-504 (2002) https://doi.org/10.1016/S0197-0186(01)00120-6
  22. Cheung LM, Cheung PCK, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81: 249-255 (2003) https://doi.org/10.1016/S0308-8146(02)00419-3
  23. Park YK, Lee WY, Park SY, Ahn JK, Han MS. Antioxidant activity and total phenolic content of Callistemon citrinus extracts. Food Sci. Biotechnol. 14: 212-215 (2005)
  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Choi YM, Ku JB, Chang HB, Lee JS. Antioxidant activities and total phenolics of ethanol extracts from several edible mushrooms produced in korea. Food Sci. Biotechnol. 14: 700-703 (2005)
  26. Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia terapotensis. J. Nat. Prod. 64: 892-895 (2001) https://doi.org/10.1021/np0100845
  27. Coperland RA. Enzyme: A practical introduction to structure, mechanism, and data analysis. Wiley-VCH, New York, NY, USA. pp. 266-332 (2000)
  28. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm. -Wiss. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  29. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3