Expression of UNC-50 DNA in periodontal tissue of rats after application of intermittent orthodontic force

간헐적 교정력 적용 후 백서 치주인대에서 UNC-50 유전자의 발현

  • Park, Mi-Kyoung (Department of Orthodontics, College of Dentistry, Chosun University) ;
  • Lim, Sung-Hoon (Department of Orthodontics, College of Dentistry, Chosun University) ;
  • Kim, Kwang-Won (Department of Orthodontics, College of Dentistry, Chosun University) ;
  • Park, Joo-Cheol (Department of Oral Histology, College of Dentistry, Chosun University)
  • 박미경 (조선대학교 치과대학 교정학교실) ;
  • 임성훈 (조선대학교 치과대학 교정학교실) ;
  • 김광원 (조선대학교 치과대학 교정학교실) ;
  • 박주철 (조선대학교 치과대학 구강조직학교실)
  • Published : 2006.08.30

Abstract

Objective: Periodontal ligament fibroblasts have an ectomesenchymal origin and are thought to play a crucial role for not only homeostasis of periodontal tissues but also bone remodeling, wound healing and regeneration of tissues. Recently, it has been reported that UNC-50 is not expressed in gingival fibroblasts but in PDL fibroblasts. The purpose of this study was to examine the expression of UNC-50 and osteocalcin in the periodontium after application of intermittent force. Methods: Twelve rats had 40 grams of mesially-directed force applied at the upper molar for 1 hour/day. Four rats were sacrificed at 1, 3 and 5 days. Immunohistochemical localization of UNC-50 and osteocalcin antibody was carried out. The results showed apposition of new cellular cementum and a slight increase in periodontal space at the tension side. Results: Strong UNC-50 expression was observed in the differentiating cementoblasts close to PDL fibroblasts in the tension side whereas it was barely expressed at the compression side. Expression was strong at day 3, and decreased at day 5. Osteocalcin immunoreactivity expression was strong in differentiating cementoblasts at the tension side. Conclusion: It can be suggested that UNC-50 is related to the differentiation of cementoblasts, and may be responsible for the molecular event in PDL cells under mechanical stress.

기계적 응력은 정상적인 발달과정 동안 조직의 항상성에 있어 중요한 역할을 한다. 기계적 응력은 치아 이동과 저작과 같은 상황을 포함한다. 치아 이동과 저작 중에 치주인대 섬유모세포는 기계적 자극을 감지하고 주위의 세포밖 물질과 생체분자 대사의 변동에 의해 반응을 보인다. 그러나 아직까지 기계적 응력 하에서 치주인대 세포에서 발현된 유전자에 관한 연구는 미비한 실정이다. 최근 기계적 응력이 초파리에 존재하는 UNC-50 유전자에 영향을 줄 수 있다고 보고되었다. 또한 UNC-50은 치은 섬유모세포와 비교해 치주인대 섬유모세포에서만 발현된다고 보고되었다. 본 연구에서는 간헐적 교정력 적용 시에 백서의 치아에서 일어나는 치근 및 치주 조직의 조직학적 변화와, UNC-50의 발현 양상을 면역조직학적 염색으로 조사하여 치주인대에서 기계적 응력과 UNC-50의 관련성을 알아보고자 하였다. Sprague-Dawely계 수컷 백서 12마리를 4마리씩 세 군으로 나누어 상악 우측 구치부에 NiTi closed coil spring을 사용하여 40 g 정도의 견인력이 발생하도록 하여 하루에 1시간씩 간헐적인 교정력을 적용한 후 1, 3, 5일 후 치주인대의 조직학적 변화를 관찰하여 다음과 같은 결과를 얻었다. 조직학적 소견에서 상악 제1대구치 근심구개치근의 치근부 1/3에서 압박측은 안장측보다 더 좁은 치주인대공간을 보였고 교정력을 적용시킨 후 3일 후부터 인장측에서 백악모세포 활성으로 인한 백악질 침착이 관찰되었다. UNC-50은 인장측의 분화 중인 백악모세포에서 강한 발현을 보였다. Osteocalcin은 인장측에서 압박측에 비해 신생 백악질에 존재하는 분화 중인 백악모세포를 따라 강한 발현을 보였다. 이상의 연구결과는 UNC-50이 간헐적 교정력 즉 기계적 응력의 변화에 따른 백악모세포의 분화과정에 중요한 역할을 함을 나타낸다. 그러나 이를 명확히 하기 위해서는 교정력 적용 후 UNC-50의 세포내 신호전달과정에 대한 보완연구가 필요할 것이다.

Keywords

References

  1. Reitan K. Tissue behavior during orthodontic movement. Am J Orthod 1960;46:881-900 https://doi.org/10.1016/0002-9416(60)90091-9
  2. McCulloch CA. Basic considerations in periodontal wound healing to achieve regeneration. Periodontol 2000 1993;1:16-25
  3. Nancy A, Ten Cate's Oral Histology : Development, structure, and function. 6th ed. St Louis: Mosby; 2003. p. 240-274
  4. Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 1997;13: 20-40 https://doi.org/10.1111/j.1600-0757.1997.tb00094.x
  5. Chien HH, Lin WL, Cho MI. Expression of TGF-beta isoforms and their receptors during mineralized nodule formation by rat periodontal ligament cells in vitro. J Periodontal Res 1999;34:301-9 https://doi.org/10.1111/j.1600-0765.1999.tb02258.x
  6. Schroeder HE. The periodontium. Berlin: Springer-Verlag;1986
  7. Cho MI, Garant PR. Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec 1996;245:342-60 https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<342::AID-AR16>3.0.CO;2-P
  8. Cochran DL, Wozney JM. Biological mediators for periodontal regeneration. Periodontol 1999;19:40-58 https://doi.org/10.1111/j.1600-0757.1999.tb00146.x
  9. Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, Shima K, Matsuzaka K, Inoue T. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech 2003;60:491-502 https://doi.org/10.1002/jemt.10290
  10. Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 1997;24:669-77 https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  11. Park JC, Kim YB, Kim HJ, Jang HS, Kim HS, Kim BO, Han KY. Isolation and charaterization of cultured human periodental ligament fibroblast-specific cDNAs. Biochem Biophys Res Commun 2001; 282:1145-53 https://doi.org/10.1006/bbrc.2001.4694
  12. Perrimon N, Smouse D, Miklos GL. Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics 1989;121:313-31
  13. Kernan M, Cowan D, Zuker C. Genetic dissection of mechanosensory transduction : mechanoreception-defective mutations of Drosophila. Neuron 1994;12:1195-206 https://doi.org/10.1016/0896-6273(94)90437-5
  14. Perrimon N, Engstrom L, Mahowald AP. Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X chromosome, Genetics 1989;121:333-52
  15. Fitzgerald J, Kennedy D, Viseshakul N, Cohen BN, Mattick J, Bateman JF, Forsayeth JR. UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res 2000;877:110-23 https://doi.org/10.1016/S0006-8993(00)02692-5
  16. Kwon SY, Bae SM, Kyung HM, Sung JH. The effect of continuous and intermittent compressive pressure on alkaline phosphatase activity of periodontal ligament cells. Koean J Orthod 1997;27:599-605
  17. Oppenheim A. A possibility for physiologic orthodontic movement. Am J Orthod Oral Surg 1944;30:277-328 https://doi.org/10.1016/S0096-6347(44)90178-X
  18. Reitan K. Some factors determining the evaluation of forces in orthodontics. Am J Orthod 1957;43:32-45 https://doi.org/10.1016/0002-9416(57)90114-8
  19. O'Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech 1982;15:767-81 https://doi.org/10.1016/0021-9290(82)90092-6
  20. Ji S, Kim BO, Kim SM, Park CJ. Expression of peridontal ligament fibroblast-specific gene, PDLs22 during development of periodontal ligament, alveolar bone and cementum. Korean J Anat 2003;36: 123-32
  21. Kim HJ, Jeong MJ, Kim BO, Kook JK, Kim CK, Park JC. Expression of periodontal ligament fibroblast-specific gene, PDLs22 during development and differentiation of periodontal tissue J Kor Oral Maxillofac Pathol 2005;29:17-23
  22. Kirino Y, Tsuchiya T, Kurihara S, Chiba M, Miura F. A study of tooth movement with super-elastic force. J Jpn Orthod Soc 1991;99: 315-24
  23. King GJ, Keeling SD, McCoy EA, Ward TH. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am J Orthod Dentofacial Orthop 1991;99:456-65 https://doi.org/10.1016/S0889-5406(05)81579-3
  24. Gibson JM, King GJ, Keeling SD. Long-term orthodontic tooth movement response to short-term force in the rat. Angle Orthod 1992;62:211-5
  25. Konoo T, Kim YJ, Gu GM, King GJ. Intermittent force in orthodontic tooth movement. J Dent Res 2001;80:457-60 https://doi.org/10.1177/00220345010800021101
  26. Davidovitch Z, Shanfeld JL. Cyclic AMP levels in alveolar bone of orthodontically-treated cats. Arch Oral Biol 1975;20:567-74 https://doi.org/10.1016/0003-9969(75)90076-X
  27. Reddi AH, Cunningham NS. Initiation and promotion of bone differentiation by bone morphogenetic proteins. J Bone Miner Res 1993;8(2 suppl):499S-502S https://doi.org/10.1002/jbmr.5650081313
  28. Howes R, Bowness JM, Grotendorst GR, Martin GR, Reddi AH. Platelet-derived growth factor enhances demineralized bone matrix-induced cartilage and bone formation. Calcif Tissue Int 1998;42:34-8 https://doi.org/10.1007/BF02555836
  29. Dennison DK, Vallone DR, Pinero GJ, Rittman B, Caffesse RG. Differential effect of $TGF-{\beta}1$ and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J Periodontol 1994;65:641-8 https://doi.org/10.1902/jop.1994.65.7.641
  30. Canalis E, McCarthy T, Centrella M. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 1988;81:1572-77 https://doi.org/10.1172/JCI113490
  31. Cho MI, Lin WL, Garant PR. Occurrence of epidermal growth factor-binding sites during differentiation of cementoblasts and periodontal ligament fibroblasts of the young rat: a light and electron microscopic radioautographic study. Anat Rec 1991;231:14-24 https://doi.org/10.1002/ar.1092310104
  32. Nohutcu RM, Somerman MJ, McCauley LK. Dexamethasone enhances the effects of parathyroid hormone on human periodontal ligament cells in vitro. Calcif Tissue Int 1995;56:571-7 https://doi.org/10.1007/BF00298592
  33. Nilda A, John JS, Jennifer M, Ruth AF, Martha J. Human periodontal cells initiate mineral-like nodule in vitro. J periodontal 1991;62:499-503 https://doi.org/10.1902/jop.1991.62.8.499
  34. Cho MI, Matsuda N, Lin WL, Moshier A, Ramakrishnan PR. In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcif Tissue Int 1992;50:459-67 https://doi.org/10.1007/BF00296778
  35. Ramakrishnan PR, Lin WL, Sodek J, Cho MI. Synthesis of noncollagenous extracellualar matrix proteins during development of mineralized nodules by rat periodontal ligament cells in vitro. Calcif Tissue Int 1995;57:52-9 https://doi.org/10.1007/BF00298997
  36. Ruch JV. Odontoblast commitment and differentiation. Biochem Cell Biol 1998;76:923-38 https://doi.org/10.1139/bcb-76-6-923