Effect of $Zn^{2+}$ and Ferulic Acid on Laccase and Manganese Peroxidase Production by Funalia trogii

Funalia trogii에 의한 Laccase와 Manganese Peroxidase의 생산시 $Zn^{2+}$ 및 Ferulic Acid가 미치는 영향

  • Park, Chul-Hwan (Green Engineering Team, Korea Institute of Industrial Technology(KITECH)) ;
  • Han, Eun-Jung (Green Engineering Team, Korea Institute of Industrial Technology(KITECH)) ;
  • Lee, Byung-Hwan (Department of Chemical System Engineering, Keimyung University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Sang-Yong (Green Engineering Team, Korea Institute of Industrial Technology(KITECH))
  • 박철환 (한국생산기술연구원 청정공정팀) ;
  • 한은정 (한국생산기술연구원 청정공정팀) ;
  • 이병환 (계명대학교 화학시스템공학과) ;
  • 이진원 (서강대학교 화공생명공학부) ;
  • 김상용 (한국생산기술연구원 청정공정팀)
  • Published : 2006.04.28

Abstract

Typical property of the white-rot fungi is their ability to degrade lignin and other aromatic compounds with non-specific extracellular enzyme. In this work, the modification of the strain(Funalia trogii ATCC 200800) and the culture condition was performed to enhance enzyme productivity. Single cell was separated by the protoplasts formation and several putative laccase and manganese peroxidase inducers were tested. By adopting the modified strain, enzyme productivity increased comparing with that of the original strain. Extracellular enzyme formation was highly stimulated by the addition of copper and various aromatic compounds in the glucose-based culture medium.

F. trogii ATCC 200800으로부터 원형질체 분리를 통해 단일균주들을 선별하였으며, 선별된 균주들의 고체배양 및 agar plug assay를 통해 효소생산을 위한 균주를 대량 선별하였다. Agar plug assay를 통해 4일 동안 100여종 이상의 균주를 동시에 배양, 분석이 가능하였으며, 염료분해환을 형성하지 않은 균주는 액체배양 확인 결과 MnP의 생산이 거의 일어나지 않는 것으로 나타났다. 이러한 방법으로 선별된 균주를 이용하여 UV 돌연변이를 통해 모균주로부터 유전적 변이를 유도해 새로운 균주선별을 시도하였으며, 이로부터 모균주와 비교하여 효소생산성이 향상되고 안정성이 증대된 균주를 선별할 수 있었다. 모균주와 선별된 균주의 명확한 유전적 차이를 규명하기보다는 배양시 형태학적 특성이 상이함을 확인하였다. 또한, 선별된 균주를 이용하여 배양액내에 다양한 종류의 inducer를 첨가에 따라 효소생산에 미치는 영향을 확인하였다. 과량의 inducer 물질이 첨가될 경우, 균체성장은 물론 효소생산성도 크게 떨어졌으며, 균체성장이 어느 정도 이루어진 상태 즉, 이차대사가 이루어지는 시점에서 inducer를 첨가할 경우 그 효율이 최대였으며, 동시에 inducer를 첨가할 경우 보다 미량씩 일정량을 나누어 주입할 경우 효소생산에 더 유리한 것으로 나타났다.

Keywords

References

  1. Fu, Y. and T. Viraraghavan (2001), Fungal decolorization of dye wastewaters: a review, Biores. Technol. 79, 251-262 https://doi.org/10.1016/S0960-8524(01)00028-1
  2. Lin, S. H. and F. C. Peng (1994), Treatment of textile wastewater by electrochemical methods, Water Res. 28, 277-282 https://doi.org/10.1016/0043-1354(94)90264-X
  3. Kim, S., C. Park, T.-H. Kim, J. Lee, and S.-W. Kim (2003), COD reduction and decolorization of textile effluent using a combined process, J. Biosci. Bioeng. 95, 102-105 https://doi.org/10.1016/S1389-1723(03)80156-1
  4. Calabro, V., E. Drioli, and F. Matera (1991), Membrane distillation in the textile wastewater treatment, Desalination. 83, 209-224 https://doi.org/10.1016/0011-9164(91)85096-D
  5. Ramakrishna, K. R. and T. Viraraghavan (1997), Dye removal using low cost adsorbents, Water Sci. Technol. 36, 189-196
  6. Rodriguez, E., M. A. Pickard, and R. Vazquez-Duhalt (1999), Industrial dye decolorization by laccase from ligninolytic fungi, Curr. Microbiol. 38, 27-32 https://doi.org/10.1007/PL00006767
  7. Kirby, N., R. Marchant, and G. McMullan (2000), Decolorisations of synthetic textile dyes by Phlebia tremllosa, FEMS Microbiol. Lett. 188, 93-96 https://doi.org/10.1111/j.1574-6968.2000.tb09174.x
  8. Robinson, T., B. Chandran, and P. Nigam (2001), Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes, Enzyme Microb. Technol. 29, 575-579 https://doi.org/10.1016/S0141-0229(01)00430-6
  9. Ollikka, P., K. Alhonmaki, V. Leppanen, T. Glumoff, T. Raijola, and I. Suominen (1993), Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 4010-4016
  10. Young, L. and J. Yu (1997), Ligninase-catalysed decolorization of synthetic dyes, Water Res. 31, 1187-1193 https://doi.org/10.1016/S0043-1354(96)00380-6
  11. Zhang, F.-M., J. S. Knapp, and K. N. Tapley (1999), Decolourisation of cotton bleaching effluent with wood rotting fungus, Water Res. 33, 919-928 https://doi.org/10.1016/S0043-1354(98)00288-7
  12. Arora, D. S., M. Chander, and P. K. Gill (2002), Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective of wheat straw, Int. Biodeter. Biodegrad. 50, 115-120 https://doi.org/10.1016/S0964-8305(02)00064-1
  13. Galhaup C. and D. Haltrich (2001), Enhanced formation of laccase activity by the white-rot fungus Trametes pubescebs in the presence of copper, Appl. Microbiol. Biotechnol. 56, 225-232 https://doi.org/10.1007/s002530100636
  14. Lilly, W. W., G. J. Wallweber, and T. A. Lukefahr (1992), Cadmium absorption and its effects on growth and mycelial morphology of the basidiomycete fungus Schizophyllum commune, Microbios. 72, 227-237
  15. Park, C., Y. Lee, T. H. Kim, M. Lee, B. Lee, J. Lee, and S. Kim (2003), Enzyme decolorization of various dyes by Trametes versicolor KCTC 16781, Korean J. Biotechnol. Bioeng. 18, 398-403
  16. Kapdan, I., F. Kargi, G. McMullan, and R. Marrchant (2000), Comparison of white-rot fungi cultures for decolorization of textile dyestuffs, Bioprocess Eng. 22, 347-351 https://doi.org/10.1007/s004490050742
  17. Criquet, S., S. Tagger, G. Vogt, G. Iacazio, and J. L. Petit (1999), Laccase activity of forest litter, Soil Biol. Biochem. 31, 1239-1244 https://doi.org/10.1016/S0038-0717(99)00038-3
  18. Ichikawa, T., M. I. Date, and A. Ozak (1971), Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method, Folia Microbiol. 16, 218-224 https://doi.org/10.1007/BF02884210
  19. Shicheng, C., M. Dengbo, G. Wei, and A. B. John (2003), Induction of laccase activity in the edible straw mushroom Volvariella volvacea, FEMS Microbiol. Lett. 218, 143-148 https://doi.org/10.1111/j.1574-6968.2003.tb11510.x
  20. Baldrian, P. (2003), Interactions of heavy metals with white-rot fungi, Enzyme Microb. Technol. 32, 78-91 https://doi.org/10.1016/S0141-0229(02)00245-4
  21. Palmieri, G., P. Giarduna, C. Bianco, B. Fontanella, and G. Sammia (2000), Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus, Appl. Environ. Microbiol. 63, 3444-3450
  22. Soden, D. M. and A. D. W. Dobson (2001), Differential regulation of laccase gene expression in Pleurotus sajor-caju, Microbiol. 147, 1755-1763 https://doi.org/10.1099/00221287-147-7-1755
  23. Baldrian, P. and J. Gabriel (2002), Copper and cadmium increase laccase activity in Pleurotus ostreatus, FEMS Microbiol. Lett. 206, 69-74
  24. Eggert, C., U. Temp, and K. E. Eriksson (1996), The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151-1158
  25. Faison, B. D. and T. K. Kirk (1985), Factors involved in the regulation of a ligninase activity in Phanerochaete Chrysosporium, Appl. Environ. Microbiol. 49, 299-304
  26. Gold, M. H., M. Kuwahara, A. A. Chiu, and J. K. Glenn (1984), Purification and characterization of an extracellular $H_2O_2$-requiring diarylpropane oxygenase from the white-rot basidiomycete, Phanerochaete chrysosporium, Arch. Biochem. Biophys. 234, 353-362 https://doi.org/10.1016/0003-9861(84)90280-7