A Study on FE Modeling Techniques of Steel Plate Girder Bridge with Composite Section for the Dynamic Analysis

동특성 분석을 위한 합성단면을 갖는 교량구조물의 FE 모델링 기법

  • 허광희 (건양대학교 토목시스템공학과)
  • Received : 2004.09.06
  • Published : 2006.01.27

Abstract

The dynamic characteristics of a bridge deduced by using the modeling techniques depend on its stiffness and mass calculated from its geometric model. This research develops the FE modeling techniques for a steel plate girder bridge with composite section. and proves their validity by comparing the results with those from actual measurement. The FE modeling techniques are divided into two categories--a simplified one and two-dimensional model and a detailed three-dimensional model. In the meantime, the dynamic responses of the bridge tested for this research were measured by the ambient vibration some of accelerometers were been attached to its upper slab girder under normal traffic load. The Cross Power Spectrum obtained from the measurement was used to analyze the dynamic characteristics by natural excitation techniques. The analytic results are compared to those of each FE modeling, and thereby the modeling techniques were proved to be valid.

모델링을 통한 교량구조물의 동적인 특성은 주로 구조물의 기학학적 형상에서 계산된 강성과 질량에 의해서 결정된다. 따라서 본 연구는 합성단면을 갖는 강판형거더교량의 FE 모델링 기법을 제시하고 제시된 모델링 기법은 실계측된 동특성과 비교 분석하여 유용성을 제시했다. 제시된 FE 모델링 기법은 단순화된 1-2차원 모델과 3차원 상세모델로 구분하여 각각의 기법을 제안하고 유용성을 보여 주었다. 구조물의 동적 응답은 상부 슬래브를 지지하는 거더에 가속도계를 부착하여 일반 차량하중 상태에서 발생하는 상시 진동에 의해 측정되었다. 이렇게 측정된 교차파워스펙트럼을 역퓨리에 변환에 의해 교차상관함수로 변환하여 구조물의 특성을 분석하였다. 이들결과는 FE모델링의 결과와 비교하여 제안된 모델링 기법의 유용성을 제시하였다.

Keywords

References

  1. Doebling S. W., Farrar C. R., Prome M. B. and Shevitz D. W., "Damage Identification and Health Monitoring of Structural and Mechnnical Systems from Changes in Their Vibration Characteristics: A Literature Review," Los Alamos National Laboratory Report LA- 13070-MS. 1996.
  2. Farrar C. R., et al., "Finite Element Analysis of The I-40 Bridge over The Rio Grande," Los Alamos National Laboratory report LA-12979-MS. 1996.
  3. Ewins D. J., "Modal Testing: Theory, Practice and Application," R.S.P. 2000.
  4. Ko J. M., Wong C. W., and Lam, H. F., "Damage Detection in Steel Framed Structures by Vibration Measurement Approach," Proceedings of the 12th International Modal Analysis Conference. 1994.
  5. Pandey A. K., and Biswas M., "Damage Diagnosis of Truss Structures by Estimation of Flexibility Changes," Modal Analysis: the International Journal of Ana7lytical and Experimental Modal Analysis, V 10, N 2, 1995. pp. 104-117
  6. Roeck G. De, Peeters B. and Ren W. X., "Benchmark Study on System Identification Through Ambient Vibration Measurements," Proceedings of IMAC-XVIII, the 18th International Modal Analysis Conference, Texas, 2000. pp. 1106-1112.
  7. He J. and Ewins D. J., "Compatibility of Measured and Predicted Vibration Modes in Model Improvement Studies," AIAA Journal, Vol. 29, No.5, 1991.pp. 798-803 https://doi.org/10.2514/3.59937
  8. Friswell M. I., Mottershead J. E., "Finite Element Model Updating in Structural Dynamics," Kluwer Academic Publishers. 1995.
  9. Bath K. J. (1996), "Finite Element Procedures," Prentice Hall.
  10. Tirupathi. R. C., Ashok D. B., "Introduction to Finite Elements in Engineering; Second Edition," Prentice Hall. 1997.
  11. Farrar C.R., Thomas A. Duffey, "Bridge Modal Properties Using Simplified Finite Element Analysis," LAN L report. 1996.
  12. Casas J. R., "Dynamic Modeling of Bridges: Some Thoughts Derved from Field Testing," 74th Annual Transportation Research Board Meeting. 1995.
  13. Heins C. P., "BENDING AND TORSIONAL DESIGN IN STRUCTURAL MEMBERS," D. C. Heath and Company, Lexington, MA. 1975.
  14. SDRC, "Exploring I-DEAS Simulation," vol. I. 1996.
  15. Farrar C. R., James III G. H., "System Identification from Ambient Vibration Measurements on A Bridge," Journal of Sound and Vibration, vol 205, No. 1, 1997. p.1-18. https://doi.org/10.1006/jsvi.1997.0977