Ti-구형활성탄의 유동상 광촉매 특성 평가

Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst

  • 이준재 (한국화학연구원 화학공정연구센터) ;
  • 서정권 (한국화학연구원 화학공정연구센터) ;
  • 홍지숙 (한국화학연구원 화학공정연구센터) ;
  • 박진원 (연세대학교 화학공학과) ;
  • 이정민 (한국화학연구원 화학공정연구센터)
  • Lee, Joon-Jae (Center for Chemical Process & Engineering, Korea Research Institute of Chemical Technology) ;
  • Suh, Jeong-Kwon (Center for Chemical Process & Engineering, Korea Research Institute of Chemical Technology) ;
  • Hong, Ji-Sook (Center for Chemical Process & Engineering, Korea Research Institute of Chemical Technology) ;
  • Park, Jin-Won (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Jung-Min (Center for Chemical Process & Engineering, Korea Research Institute of Chemical Technology)
  • 투고 : 2006.06.27
  • 심사 : 2006.07.18
  • 발행 : 2006.08.31

초록

티타늄 담지 구형활성탄(spherical activated carbon, SPAC)을 제조하여 유동상 광촉매 반응에 적용하고 그 특성을 평가하였다. 티타늄을 담지하기 위하여 염화티타늄용액으로 이온교환 처리된 이온교환수지를 열처리 과정을 통하여 구형활성탄으로 변환시켜 주었다. 열처리 과정 중 감량되는 성분 및 무게 변화는 TGA/MS 분석을 통하여 알아보았으며,Ti을 함유한 구형활성탄의 물리화학적 성질은 SEM, XRD, EPMA, ESR, EDS, BET와 같은 분석을 통하여 그 특성을 알아보았다. 그 결과 Ti-구형활성탄의 입자 크기는 $350{\mu}m{\sim}400{\mu}m$, 비표면적은 $617m^2/g$ 이였으며, 담지 된 티타늄은 $TiO_2$ anatase 형태와 rutile 형태가 주를 이루고 있음을 알 수 있었다. 구형활성탄에 담지 된 $TiO_2$는 약 6 wt%로 균일한 분산도로 구형활성탄 표면에 담지 된 것을 EPMA 분석을 통해 알 수 있었다. 더욱이 ESR 분석을 통하여 간접적인 광촉매 활성을 확인할 수 있었으며, 따라서 이러한 결과들을 바탕으로 유동상 광반응조를 이용한 HA(humic acid) 광분해 반응에 적용하였다. 그 결과, 제거 효율이 약 70% 정도로 높게 나타났을 뿐만 아니라 반응 중에도 Ti-구형활성탄의 강도가 계속 유지되어 유동상 반응에서의 광분해 촉매로서 활용가능성을 보여주었다.

In this sturdy, spherical activated carbon(SPAC) contained $TiO_2$ was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by $TiCl_3$ aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about $350{\mu}m{\sim}400{\mu}m$ and $617m^2/g$ specific surface area. Structure of $TiO_2$ in Ti-SPAC was anatase and rutile form. Also, $TiO_2$ on SPAC were found that the $TiO_2$ were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.

키워드

참고문헌

  1. Hermann, J.-M., 'Heterogeneous Photocatalysis: An Emerging Discipline Involving Multiphase System,' Catalysis Today, 24, 157-163(1995) https://doi.org/10.1016/0920-5861(95)00005-Z
  2. Niyaz, M. M., Molhtar, A., Nargess, Y. L. and Nooshin, S. T., 'Kinetics of Heterogenous Photocatalytic Degradation of Reactive Dyes in an Immobilized $TiO_2$ Photocatalytic Rector,' J. Colloid and Interface Science, 295, 159-164(2006) https://doi.org/10.1016/j.jcis.2005.08.007
  3. Lee, S. W. and Lee, K., 'Mass Transfer Effect on the Photocatalytic Activity of UV.$TiO_2$ Packed-bed System,' J. ind. Eng. Chem., 10(3), 492-498(2004)
  4. Turchi, C. S. and Ollis, D. F., 'Photocatalystic Reactor Design: An Example of Mass-transfer Limitation with Immobilized Catalyst,' J. Phys. Chem, 92(23), 6852-6853(1988) https://doi.org/10.1021/j100334a070
  5. Louise, E. B. and Mary, D., 'The Evaluation of Colour in Natural Waters,' Water. Res., 27(7), 1209-1218(1993) https://doi.org/10.1016/0043-1354(93)90013-8
  6. McCarthy, J. F., 'Bioavailability and Toxicity of Metals and Hydrophobic Organic Contaminants. In Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants,' American Chemical Society, Washington. DC 263-279(1989)
  7. Singer, P. C. 'Humic Substance as Precursors for Potentially Harmful Disinfection by-products,' Water Sci. Thechnol., 40(9), 25-30(1999)
  8. Ministry of Environmental(Korea), data base of water quality
  9. Wang, G. S., Liao, C. H. and Wu, F. J., 'Photodegradation of Humic Acid in the Presence of Hydrogen Peroxide,' Chemosphere, 42, 379-387(2001) https://doi.org/10.1016/S0045-6535(00)00153-3
  10. Wu, C., Yue, Y., Deong, X., Hua, W. and Gao, Z., 'Investigation on the Sinergetic Between Anatase and Rutile Nanoparticle in Gas-phase Photocatalytic Oxidations,' Catalysis Today, 93, 863-869(2004) https://doi.org/10.1016/j.cattod.2004.06.087
  11. Kim, T. H., Lee, M. N., Lee, S. H., Park, Y. C., Jung, C. K. and Boo, J. H., 'Development of Surface Coating Technology of $TiO_2$ Powder and Improvement of Photocatalytic Activity by Surface Modification,' Tim Solid Films., 475, 171-177(2005) https://doi.org/10.1016/j.tsf.2004.07.021
  12. Yoneyama, H. and Torimoto, T., 'Titanium Dioxide/adsorbent Hybrid Photocatalysts for Photodestruction of Organic Substances of Dilute Concentrations,' Catalysis Today, 58, 133-140(2000) https://doi.org/10.1016/S0920-5861(00)00248-0
  13. Torimoto, T., Ito, S., Kuwabata, S. and Yoneyama, H., 'Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide,' Environ. Sci. Tech., 30, 1275-1281(1996) https://doi.org/10.1021/es950483k
  14. Banwell, C. N. and McCash, E. M., Fundamentals of molecular spectroscopy. McGRAW-HILL BOOK COMPANY., 254-257(1994)