Static and Dynamic Behavior of Disk Bearings under Railway Vehicle Loading

철도차량하중에 의한 디스크받침의 정·동적 거동특성

  • Received : 2006.03.07
  • Accepted : 2006.07.21
  • Published : 2006.08.27

Abstract

The goal of this study is to ases the static and dynamic behavior of disk bearings under railway vehicle loadings. Several static tests were conducted in a laboratory t bearings, all having the same kind of polyurethane disk as used in the static tests, were installed under a full-sized railway bridge and tested with a running locomotive, the tests results, the static and dynamic stiffness of the disk bearings were estimated and compared. the deformation of the disk bearings under the bridge was measured at varying disk bearing was almost half of that under dynamic loading. In addition, the dynamic stiffness of the fixed disk bearing was 80% higher than that of an expansion disk bearing, since the PTFE in the expansion bearing is displaced. The deformation of the disk bearing did not vary significantly with changes in locomotive's speed. The results of this study can contribute to fast-tracking the formulation of a design technique for disk bearings for railway bridges.

본 연구의 목적은 철도차량하중으로 인한 디스크받침의 정 동적 거동특성을 평가하여, 디스크 받침 설계기술 발전에 기여하고자 함이다. 디스크받침은 탄성받침의 일종으로 폴리우레탄 패드를 사용하여 탄성을 구현하고 있으며, 가동단에는 PTFE를 사용하여 교량의 움직임을 흡수하고 있다. 실험실에서 수차례의 정적 실험을 실시하여 폴리우레탄 고무의 정적거동을 평가하기 위한 데이터를 획득하였다. 또한, 4개의 디스크받침은 철도교량인 판형교에 설치하여 철도차량에 의한 디스크받침의 동적 거동을 측정하였다. 현장실험은 기관차 1량을 사용하여 일정속도로 주행하는 주행시험을 실시하여 각 디스크받침의 동적 변형과 이에 작용하는 동적 하중을 측정하였다. 정적 실험을 통해서 나타난 사실은 수직강성에 크게 기여하는 것이다. 또한 동적 강성은 정적으로 평가된 강성보다 크게 나타났다. 차량의 속도가 증가함에 따라 디스크받침의 변형도 증가하는 것으로 나타났지만, 크게 증가하지는 않았다. 디스크받침의 고정단의 동적 강성이 가동단의 강성보다 크게 나타나는데, 이는 가동단의 PTFE가 변형을 일으키기 때문이라고 판단된다. 이러한 결과는 철도교를 위한 디스크받침 설계기술의 발전에 기여할 것이다.

Keywords

References

  1. AASHTO (1996) AASHTO LRFD bridge design specifications, Washington, D.C.
  2. Burpulis J.S., Seay, J.R. and Graff, R.S. (1990) Neoprene in Bridge Bearing Pads- The Proven Performance, Extending the Life of Bridges, ASTM STP 1100, American Society for Testing and Materials, Philadelphia, pp. 32-43
  3. Choi, E., Kim, H.M., Oh, J.T and Kim, S.G. (2005). Analysis of Dynamic Behavior of Open-Steel- Plate-Girder Bridges Due to Installing Rubber Pads, Journal of Korean Society of Steel Construction, Vol.17, No. 3, pp. 295-306
  4. Eggert, H. and Kauschke, W. (2002). Structural Bearings, Ernst & Sohn, A Wiley Company, Berlin, German
  5. ERRI D 190 (1995) Permissible Deflection of Steel and Composite Bridges for Velocities V>160km : RP 5 Parametric Study Studies-Summary and Recommendations Final Report
  6. Oh, S.W., Choi, E. and Jung, H.Y. (2005). The Estimated Stiffness of Rubber Pads for Railway Bridge, Journal of Korean Society of Steel Construction, Vol. 17, No. 3, pp. 307-316
  7. Ramberger, G. (2002). Structural Bearings and Expansion Joints for Bridges, IABSE-AIP-IVBH, Zurich, Switzerland
  8. Roeder, C.W. Stanton, J.F. and Taylor, A.W. (1987). Performance of elastomeric bearings, NCHRP Rep. No. 298, Transportation Research Board, Washington, D.C
  9. Stanton, J.F. and Roeder, C.W. (1985). Elastomeric bearings design, construction, and materials, NCHRP Rep. No. 248, Transportation Research Board, Washington, D.C
  10. Yazdani, N., Fellow, P.E., Eddy, S. and Chun, S. (2000). Effect of Bearing Pads on Precast Prestressed Concrete Bridges, Journal of Bridge Engineering, ASCE, Vol. 5, No. 3, August, pp. 224-232 https://doi.org/10.1061/(ASCE)1084-0702(2000)5:3(224)
  11. Yang, Y.B., Lin. C.L., Yau, J.D., and Chang, D.W. (2004). Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings, Journal of Sound and Vibration, 269, pp. 345-360 https://doi.org/10.1016/S0022-460X(03)00123-8
  12. Warburton, G.B. (1976). The Dynamic Behavior of Structures, Oxford: Pergamon