DOI QR코드

DOI QR Code

Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee (Department of Chemistry, Hannam University) ;
  • Seo, Kang-Deuk (Department of Chemistry, Hannam University) ;
  • Oh, Seong-Dae (Department of Chemistry, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University) ;
  • Oh, Sang-Hyub (Div. of Chemical Metrology and Materials, Evaluation/Organic Analysis Group, Korea Research Institute of Standard and Science) ;
  • Woo, Jin-Chun (Div. of Chemical Metrology and Materials, Evaluation/Organic Analysis Group, Korea Research Institute of Standard and Science) ;
  • Gopalan, A. (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University)
  • Received : 2006.07.24
  • Accepted : 2006.08.03
  • Published : 2006.08.28

Abstract

PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.

Keywords

References

  1. Balan, L., Schneider, R., Billaud, D., Ghanbaja, J., Mater. Lett., 59, 1080-084 (2005) https://doi.org/10.1016/j.matlet.2004.09.016
  2. Gupta, A. K., Gupta, M., Biomaterials, 26, 3995-4021 (2005) https://doi.org/10.1016/j.biomaterials.2004.10.012
  3. Xu, W., Xu, S., Ji, X., Song, B., Yuan, H., Coll. Surf. B, 40, 169-172 (2005) https://doi.org/10.1016/j.colsurfb.2004.10.027
  4. Wang, H., Qiao, X., Chen, J., Ding, S., Coll. Surf. A, 256, 21-25 (2005) https://doi.org/10.1016/j.colsurfa.2004.09.035
  5. Henglein, A., J. Phys. Chem. B, 104, 2201-2203 (2000) https://doi.org/10.1021/jp994300i
  6. Choi, S.-H., Lee, S.-H., Hwang, Y.-M., Lee, K.-P., Kang, H.-D., Radiati. Phys. Chem., 67, 517-521 (2003) https://doi.org/10.1016/S0969-806X(03)00097-5
  7. Choi, S.-H., Zhang, Y.-P., Gopalan, A., Lee, K.-P., Kang, H.-D., Coll. Surf. A, 256, 165-170 (2005) https://doi.org/10.1016/j.colsurfa.2004.07.022
  8. Li, T., Park, H. G., Lee, H.-S., Choi, S.-H., Nano Tech., 15, S660-S663 (2004)
  9. Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., Goddard, W.A., Kaldor, A., Luoie, S.G., Moscovits, M., Peercy P.S., Riley, S.J., Siegel, R.W., Spaepen, F., Wang, Y., J. Mater. Res., 43, 704-736 (1989)
  10. Tolbert, S.H., Alivasatos, A.P., Annu. Rev. Phys. Chem., 46, 595-625 (1995) https://doi.org/10.1146/annurev.pc.46.100195.003115
  11. Horvath, J., Birringer, R., Gleiter, H., Solid State Commun., 62, 319-322 (1987) https://doi.org/10.1016/0038-1098(87)90989-6
  12. Qin, X.Y., Wu, B.M., Du, Y.L., Zhang, L.D., Tang, H.X., Nanostruct. Mater., 7, 383-391 (1996) https://doi.org/10.1016/0965-9773(96)00004-9
  13. Tanahashi, I., Yoshida, M., Manabe, Y., Tohda, T., J. Mater. Res., 10, 362-365 (1995) https://doi.org/10.1557/JMR.1995.0362
  14. Gleiter, H., Progress Mater. Sci., 33(4), 223-315 (1989) https://doi.org/10.1016/0079-6425(89)90001-7
  15. Esumi, K., Wakabayashi, M., Torigoe, K., Coll. Surf. A, 109, 55-62 (1996) https://doi.org/10.1016/0927-7757(95)03451-X
  16. Henglein, A., Langmuir, 15, 6738-674 (1999) https://doi.org/10.1021/la9901579
  17. Yu, W., Liu, M., Liu, H., Zhen, J., J. Colloid Inter. Sci., 210, 218-221 (1999) https://doi.org/10.1006/jcis.1998.5938
  18. Uemura, T.; Kitagawa, S., J. Am. Chem. Soc., 125, 7814-7815 (2003) https://doi.org/10.1021/ja0356582
  19. De Cointet, C., Mostafavi, M., Khatouri, J., Keita, B., Nadjo, L., Belloni, J., J. Phys. Chem. B, 101, 3512-3516 (1997) https://doi.org/10.1021/jp963343l
  20. Suyal, G., Thin Solid Films, 426, 53-61 (2003) https://doi.org/10.1016/S0040-6090(02)01294-4
  21. Scholes, F.H., Furman, S.A., Lau, D., Rossouw, C.J., Davis, T.J., J. Non-Crystalline Solids, 347(1-3), 93-99 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.08.267
  22. Whelan, A.M., Brennan, M.E., Blau, W.J., Kelly, J.M., John M., J. Nanosci. Nanotech., 4(1/2), 66-68 (2004) https://doi.org/10.1166/jnn.2004.054
  23. Genzel, L., Martin, T.P., Kreibig, U.Z., Phys. B, 21, 339-346 (1975)
  24. Malik, M. A., O'Brien, P., Revaprasadu, N., J. Mater. Chem., 12(1), 92-97 (2002) https://doi.org/10.1039/b104226m
  25. Zhou, Y., Itoh, H., Uemura, T., Naka, K., Chujo, Y., Langmuir, 18(1), 277-283 (2002) https://doi.org/10.1021/la0108095
  26. Kapoor, S., Langmuir, 14, 1021-1025 (1998) https://doi.org/10.1021/la9705827
  27. Guo, J.W., Zhao, T.S., Prabhuram, J., Wong, C.W., Electrochim. Acta, 50, 1973-1983 (2005) https://doi.org/10.1016/j.electacta.2004.09.006
  28. Kuk, S.T., Wieckowski, A., J. Power Sour., 141, 1-7 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.050
  29. Choi, J.-H., Park, K.-W., Park, I.-S., Nam, W.-H., Sung, Y.-E., Electrochim. Acta, 50, 787-790 (2004) https://doi.org/10.1016/j.electacta.2004.01.109
  30. Sawyer, D.T., Roberts, Jr. J.L., Experimental Electrochemistry for Chemists, John Wiely & Sons, p. 67 (1974)
  31. Solla-Gullon, J., Rodes, A., Montile, V., Aldaz, A., Clavilier, J., J. Electroanal. Chem., 554-555, 273-284 (2003) https://doi.org/10.1016/S0022-0728(03)00214-6