The Characteristics of Poly(ethylene naphthalate)/Poly(butylene terephthalate) Blends

폴리(에틸렌 나프탈레이트)/폴리(부틸렌 테레프탈레이트) 블렌드 물성 고찰

  • Kim Hyokap (Center for Advanced Functional Polymers, Dept. of Polymer Sci. and Eng., Dankook University) ;
  • Kang Ho-Jong (Center for Advanced Functional Polymers, Dept. of Polymer Sci. and Eng., Dankook University)
  • 김효갑 (기능성 고분자 신소재 연구센터, 단국대학교 고분자공학과) ;
  • 강호종 (기능성 고분자 신소재 연구센터, 단국대학교 고분자공학과)
  • Published : 2006.01.01

Abstract

The effect of transesterification on the rheological property of poly(ethylene naphthalate)/poly(butylene tore-phthalate) (PEN/PBT) blends has been investigated. The melt viscosity of PEN/PBT blends decreased with increasing PBT content due to the relatively low melt viscosity of PBT as well as introducing ransesterification between PEN and PBT Further melt viscosity decrease was achieved by the thermal annealing which caused both the chain scission and the acceleration of transesterfication. Calcium stearate (CaST) was applied as a lubricant in order to lower the melt viscosity of PEN and it was found that CaST was acting as the catalyst of transesterification as well. In general, reactive melt blending of PEN and PBT by transesterification resulted in the decrease of molecular weight of PEN and PBT, as a result, the loss of mechanical properties in PEN/PET blend was inevitable.

상호에스테르 교환반응에 의한 폴리(에틸렌 나프탈레이트)/폴리(부틸렌 테레프탈레이트) (PEN/PBT) 블렌드의 물성 변화에 대하여 살펴보았다. PBT를 PEN에 블렌딩하는 경우 상대적으로 낮은 PBT의 용융점도에 의하여 PEN의 용융점도가 감소됨을 확인할 수 있었으며 PEN과 PBT의 상호에스테르 교환반응에 의하여 추가적인 용융점도 감소가 있음을 알 수 있었다. 윤활제로 calcium stearate(CaST)를 첨가하면 CaST는 윤활제로서의 역할과 함께 PEN과 PBT의 상호에스테르 교환반응을 촉진하는 역할을 하여 용융점도가 현저하게 감소됨을 확인하였다. 상호에스테르 교환반응을 이용한 반응 용융가공은 PEN과 PBT그리고 이들 블렌드의 분자량을 감소시키며 그 결과 기계적 물성 감소를 초래함을 확인할 수 있었다.

Keywords

References

  1. J. Jager, J. A. Juijin, C. J. M. van den Heuvel, and R. AHuijts, J. Appl. Polym. Sci, 57, 1429 (1995) https://doi.org/10.1002/app.1995.070571202
  2. S. Shimotsuma, T. Asai, M. Hosoi, and H., M. Masuda, U.S. Patent, 3,937,754 (1976)
  3. T. Brand, Chemical Market Reporter, Apr. 14, 1997
  4. J. P. Cook, H. P. W. Hugill, and A R. Lowe, British Patent , 604073 (1948)
  5. G. A. Botelho, A. Queirs, and P. Gijsman, Polym. Degrad. Stab., 70, 299 (2000) https://doi.org/10.1016/S0141-3910(00)00129-4
  6. H. Kim and H. J. Kang, Polymer(Korea), 29,475 (2005)
  7. A.M. Kotliar, J. Polym. Sci., 16, 367 (1981) https://doi.org/10.1002/pol.1955.120168225
  8. R. S. Poter and L. Wang, Polymer, 33, 2019 (1992) https://doi.org/10.1016/0032-3861(92)90866-U
  9. M. E. Stewart, A. J. Cox, and D. M. Naylor, Polymer, 34, 4060 (1993) https://doi.org/10.1016/0032-3861(93)90667-Y
  10. M. Guo and H. G. Zaehmann, Polymer, 34, 2503 (1993) https://doi.org/10.1016/0032-3861(93)90579-Y
  11. R. Lindner, Plastic Compounding, 35 (1981)
  12. E. B. Rabinovitch, E. Laeatus, and J. W. Summer, J. Vinyl. Technol., 6, 98 (1984) https://doi.org/10.1002/vnl.730060303
  13. H. Kim, J. Kim, S. Lim, K. Lee, M. Park, and H. J. Kang, Polymer(Korea), 28, 239 (2004)
  14. D. D. B. Jung, A. J. Easteal, and D. Bhattacharyya, Mat. Res. Innovat., 7,269 (2003) https://doi.org/10.1007/s10019-003-0249-z