Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone

SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생

  • Kim Soon Hee (Department of Advanced Organic Material Engineering, Chonbuk National University) ;
  • Yun Sun Jung (Department of Advanced Organic Material Engineering, Chonbuk National University) ;
  • Jang Ji Wook (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Kim Moon Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Khang Gilson (Department of Advanced Organic Material Engineering, Chonbuk National University) ;
  • Lee Hai Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • 김순희 (전북대학교 유기신물질공학과) ;
  • 윤선중 (전북대학교 유기신물질공학과) ;
  • 장지욱 (한국화학연구원 나노생체재료연구팀) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이해방 (한국화학연구원 나노생체재료연구팀)
  • Published : 2006.01.01

Abstract

Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.

조직공학 기술은 in vitro와 in vivo에서 초기 세포 부착과 차후의 조직형성을 위해 3차원적인 지지체로서 다공성의 생분해성 담체의 사용이 필수적이다. 소장점막하조직(small intestinal submucosa, SIS)은 고유의 인장력과 생체적합성 때문에 생체물질로서 사용될 잠재력을 가지고 있는 콜라겐 조직이다. 근육유래 줄기세포는 배양조건에 따라 골세포, 연골세포, 및 근육세포 등으로 분화가 가능하다고 알려져 있다. 본 연구에서는 SIS를 함유한 락타이드-글리콜라이드 공중합체(PLGA) 다공성 지지체를 용매캐스팅/염추출법으로 제조하였고, 전자주사현미경 및 수은다공측정계를 이용하여 특성을 결정하였다 세포의 생존율과 성장률은 MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide) 분석 방법을 이용하였고 골로 분화된 세포를 알칼라인 포스파테이즈(ALP) 활성을 측정하여 확인하였다. SIS가 함유된 지지체와 SIS가 함유되지 않은 지지체를 면역결핍 쥐의 피하에 삽입하여 이들의 골형성 정도를 비교하여 보았다. 조직을 파라핀으로 고정시켜 슬라이드를 제조한 후 hematoxylin과 eosin, 트라이크롬 및 본쿠사 염색을 실시하였다. 천연/합성 하이브리드 담체로서의 SIS/PLGA 담체가 PLGA 단독으로 사용하였을 때와 비교하여 볼 때 골형성이 우수하였는데 이는 SIS 내에 함유하고 있는 여러 생체활성분자에 기인한 것으로 추측되었다.

Keywords

References

  1. G. Khang, S. J. Lee, and H. B. Lee, 'Polymer-cell interaction', in Tissue Engineering: Concepts and Application, J. J. Yoo, and I. Lee, Editors, 2nd Eds., Korea Med. Pub. Co., Seoul, p. 297 (2002)
  2. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med, 1, 9 (2004)
  3. G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer Sci. Tech., 12, 527 (2001)
  4. G. Khang, S. J. Lee, I. Lee, and H. B. Lee, Polymer Sci. Tech., 13, 4 (2002)
  5. G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer Sci. Tech., 13, 226 (2002)
  6. C. M. Agrawal, G. G. Niederauer, D. M. Micallef, and K. A. Athanasiou, 'The use of PLA-PGA polymers in orthopedics', in Encyclopedic Handbook of Biomaterials and Bioengineering, Marcel Dekker, 2nd Eds., New York, p. 1055 (1995)
  7. K. A. Athanasiou, A. R. Singhal, C. M. Agrawal, and B. D. Boyan, Clin Orthop., 315, 272 (1995)
  8. L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991) https://doi.org/10.1115/1.2891228
  9. A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993) https://doi.org/10.1016/0142-9612(93)90049-8
  10. M. R. Urist, Science, 150, 893 (1965) https://doi.org/10.1126/science.150.3698.893
  11. C. B. Huggins and M. R. Urist, Science, 167, 896 (1971) https://doi.org/10.1126/science.167.3919.896
  12. J. Wang and M. J. Glimcher, Calcif. Tissue Int, 65,156 (1999) https://doi.org/10.1007/s002239900676
  13. J. Wang and M. J. Glimcher, Calcif Tissue Int., 65, 486 (1999) https://doi.org/10.1007/s002239900737
  14. G. Khang, S. J. Lee, C. W Han, J. M. Rhee, and H. B. Lee, 'Preparation and characterization of natural/synthetic hybrid scaffolds', in Advances in Experimental Medicine and Biology, Chap. 17, M. Elcin, Editor, Kluwer-Plenum Press, London, Vol. 657, p. 235 (2003)
  15. M. K. Choi, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 318 (2001) https://doi.org/10.1016/0032-3861(84)90283-0
  16. E. K. Jeon, J. Y Shim, H. J. Whang, G. Khang, I. Jo, I. Lee, J. M. Rhee, and H. B. Lee, Biomater. Res., 5, 23 (2001)
  17. E. K. Jeon, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 893 (2001)
  18. H. S. Kim, I. Lee, J. M. Lee, C. W Han, J. H. Sung, M. Y Park, G. Khang, and H. B. Lee, J. Korea Soc. Endocrinology, 17, 206 (2002)
  19. S. J. Lee, D. H. Lee, G. Khang, Y. M. Lee, and H. B. Lee, Macromol. Chem. Symp., 15, 201 (2002)
  20. J. W. Jang, B. Lee, C. W. Han, I. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 27, 226 (2003)
  21. G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, I. Lee, M. K. Choi, and H. B. Lee, Korea Polym. J.,9, 267 (2001)
  22. J. W. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004)
  23. J. W. Jang, K. S. Park, S. H. Kim, C. S. Park, M. S. Kim, C. W. Han, J. M. Rhee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 2, 34 (2005)
  24. S. B. Song, G. Khang, S. K. Hong, I. Lee, S. W. Kim, and H. B. Lee, Biomater. Res., 4, 13 (2000)
  25. G. Khang, P. K. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002) https://doi.org/10.1007/BF03218266
  26. P. K. Shin, S. J. Lee, B. Lee, Y M. Lee, H. B. Lee, and G. Khang, Macromol. Chem. Symp., 15, 175 (2002)
  27. J. A. Kang, S. J. Lee, G. Khang, I. Lee, and H. B. Lee, Biomater Res., 6, 107 (2002)
  28. H. W. Shin, S. H. Kim, J. W. Jang, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 194 (2004)
  29. S. H. Kim, H. W. Shin, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Biomater. Res., 8,143 (2004)
  30. S. J. Lee, I. Lee, Y. M. Lee, H. B. Lee, and G. Khang, J. Biomater. Sci., Polym. Ed, 15, 1003 (2004) https://doi.org/10.1163/1568562041526487
  31. M. A. Cobb, S. F. Badylak, W. Janas, and F. A. Boop, Surg. Neurol., 46, 389 (1996) https://doi.org/10.1016/S0090-3019(96)00202-9
  32. J. W. Jang, E. J. Kim, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Biomater Res., 8, 51 (2004)
  33. E. J. Kim, J. H. Song, M. S. Kim, J. M. Rhee, C. H. Han, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 1, 41 (2004)
  34. J. W. Jang, S. H. Kim, C. H. Han, M. S. Kim, S. H. Cho, H. B. Lee, I. Lee, and G. Khang, Tissue Eng. Regen. Med., 1,59 (2004)
  35. L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer, J. Blamed, Mater. Res., 11, 27 (1993)
  36. H. L. Ritter and L. C. Drake, Ind. Eng. Chem., 17, 782 (1945) https://doi.org/10.1021/i560148a013
  37. D. M. Smith, D. W. Hua, and W. L. Earl, MRS Bull., 19, 44 (1994)