Syndiotactic Polymerization of Styrene Catalyzed by Dinuclear (Cyclopentadienyl) (Aryloxy) Titanium(IV) Complexes with Polymethylene Bridge

폴리메틸렌 가지로 연결된 이핵 아릴옥시 티타늄 화합물을 이용한 스티렌의 신디오탁틱 중합

  • Kum Don-Ho (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Jung Woosung (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Kim Kyungsik (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Noh Seok Kyun (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Lee Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Lyoo Won Seok (School of Textile, Yeungnam University)
  • 금돈호 (영남대학교 디스플레이화학공학부) ;
  • 정우성 (영남대학교 디스플레이화학공학부) ;
  • 김경식 (영남대학교 디스플레이화학공학부) ;
  • 노석균 (영남대학교 디스플레이화학공학부) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 류원석 (영남대학교 섬유패션학부)
  • Published : 2006.01.01

Abstract

A series of dinuclear half-sandwich titanium complexes with aryloxy substituent at titanium$[(\eta^5-cyclopentadienyl)(aryloxy)TiCl_2]_2[(CH_2)_n]$ (n=3, n=6, n=9) have been successfully synthesized and their styrene polymerization properties have been investigated. All complexes are characterized by $^1H\;NMR,\;^{13}C\;NMR$, elemental analysis, and mass spectrometry. In order to examine the catalytic properties of the dinuclear complexes styrene polymerization has beer conducted in the presence of MMAO. It was found that (i) all the prepared complexes were very effective catalyst for the production of SPS (syndiotactic polystyrene), (ii) the complex with the longest bridge between the two active sites exhibited greatest catalytic activity among the three catalysts, but produced SPS with the smallest molecular weight, (iii) the activities of dinuclear half-titanocens with aryloxy substitution at titanium metal were greater than those of the chloride substituted compounds. These results indicate that not only the nature of the bridge between the two active sites but also the property of substituents at the metal exert a significant influence on the polymerization behaviors of the dinuclear half-titanocene.

길이가 다른 폴리메틸렌 가지로 연결되고 chloride 대신 aryloxy 기가 치환된 dinuclear half-titanocene $[(\eta^5-cyclopentadienyl)(aryloxy)TiCl_2]_2[(CH_2)_n]$ (n=3, n=6, n=0)를 합성하고 이들의 중합특성을 조사하였다. Chloride 대신 치환된 aryloxy기는 2,6-diisopropylphenoxy를 사용하였다. 합성된 3 종류의 dinuclear half-titanocene은 $^1H\;NMR,\;^{13}C\;NMR$, 원소분석, 그리고 질량분석을 통해 구조와 조성을 규명하였다 3가지 화합물의 중합특성을 비교 조사하기 위해 조촉매(MMAO) 존재 하에서 스티렌의 중합실험을 수행하였으며, 그 결과 (i) 합성된 3 가지 촉매들은 모두 스티렌 중합으로부터 SPS(syndiotactic polystyrene)를 제조하는데 성공적인 촉매였고, (ii) 3화합물 중에서 다리리간드의 길이가 가장 긴 화합물 6이 가장 높은 활성을 나타내었으나 가장 낮은 분자량의 SPS를 생성하였으며, (iii) aryloxy로 치환된 촉매가 치환되기 전의 chloride화합물에 비해 더 높은 활성을 보이는 치환체의 효과가 관찰되었다 이 결과들은 dinuclear half-titanocene에 있어서의 촉매 특성은 다리리간드의 종류와 함께 티타늄에 결합된 음이온의 특성도 촉매의 중합특성에 중요한 영향을 미치는 것임을 보여주는 것이다.

Keywords

References

  1. W. Kaminsky and A. Laban, Applied Catalysis A: General., 222, 47 (2001) https://doi.org/10.1016/S0926-860X(01)00829-8
  2. W. Kaminsky, B. Hinrichs, and D. Rehder, Polymer, 43, 7225 (2002) https://doi.org/10.1016/S0032-3861(02)00469-X
  3. W. Kaminsky, O. Sperber, and R. Werner, Coord Chem. Rev., in Press, Corrected Proof Available online 21 July, 2005
  4. Abdulaziz Al-Humydi, J. C. Garrison, Muqtar Mohammed, Wiley J. Youngs and Scott Collins, Polyhedron, 24, 1234 (2005) https://doi.org/10.1016/j.poly.2005.02.005
  5. B. Wang, Coordination Chemistry Reviews, in Press, Corrected Proof, Available online 23 June, 2005
  6. T. Yasin, Z. Fan, and L. Feng, Polyhedron, 24, 1262 (2005) https://doi.org/10.1016/j.poly.2005.02.013
  7. J. M. Canich, G. G. Hlatky, and H. W. Turner, PCT Appl. WO 9200333 (1992)(Exxon Chemical Co.)
  8. J. M. Canich, Eur. Patent Appl. EP 420 436-A1 (1991)(Exxon Chemical Co.)
  9. J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. Knight, and S. Lai, Eur.Pat.Appl. EP 416 815-A2 (1991)(Dow Chemical Co.)
  10. K. Nomura, K. Oya, and Y. Imanishi, J. Molecular Catalysis A: Chemical, 174, 127 (2001) https://doi.org/10.1016/S1381-1169(01)00196-0
  11. K. Nomura, T. Komatsu, and Y. Imanishi, Macromolecules, 33, 8122 (2000) https://doi.org/10.1021/ma0011284
  12. K. Nomura, N. Naga, M. Miki, and K. Yanagi, Macromolecules, 31, 7588 (1998) https://doi.org/10.1021/ma980690f
  13. M. Brookhart, J. M. DeSimone, B. E. Grant, and M. J. Tanner, Macromolecules, 28, 5378 (1995) https://doi.org/10.1021/ma00119a033
  14. F. A. Hicks and M. Brookhart, Organometallics, 20, 3217 (2001) https://doi.org/10.1021/om010211s
  15. T. K. Woo and T. Ziegler, J. Organomet Chem., 591, 204 (1999) https://doi.org/10.1016/S0022-328X(99)00449-0
  16. S. K. Noh, S. H. Kim, Y. D. Yang, W. S. Lyoo, and D. H. Lee, Eur. Polym. J., 40, 227 (2004) https://doi.org/10.1016/j.eurpolymj.2003.10.010
  17. J. H. Jung, S. K. Noh, D. H. Lee, S. K. Park, and H. J. Kim, J. Organomet Chem., 595, 147 (2000) https://doi.org/10.1016/S0022-328X(99)00576-8
  18. S. K. Noh, J. M. Lee, and D. H. Lee, J. Organomet. Chem., 667, 53 (2003) https://doi.org/10.1016/S0022-328X(02)02125-3
  19. S. K. Noh, G. G. Byun, C. S. Lee, D. G. Lee, K. B. Yoon, and K. S. Kang, J. Organomet Chem., 518, 1 (1996) https://doi.org/10.1016/0022-328X(96)06128-1
  20. S. K. Noh, J. M. Kim, J. H. Jung, C. S. Ra, D. H. Lee, H. B. Lee, S. W. Lee, and W. S. Huh, J. Organomet. Chem., 580, 90 (1999) https://doi.org/10.1016/S0022-328X(98)01085-7
  21. H. Li, L. Li, T. J. Marks, L. Liable-Sands, and A. L. Rheingold, J.Am. Chem. Soc., 125, 10788 (2003) https://doi.org/10.1021/ja036289c
  22. J. Wang, H. Li, N. Guo, L. Li, C. L. Stern, and T. J. Marks, Organometallics, 23, 5112 (2004) https://doi.org/10.1021/om049481b
  23. N. Guo, L. Li, and T. J. Marks, J. Am. Chem. Soc., 126, 6542 (2004) https://doi.org/10.1021/ja048761f