Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing

용융가공법을 이용한 셀룰로오스 디아세테이트/라미섬유 천연복합체의 제조

  • Lee Sang Hwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee Sang Yool (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Nam Jae Do (Department of Polymer Science & Engineering, Sungkyunkwan Univesity) ;
  • Lee Youngkwan (Department of Chemical Engineering, Sungkyunkwan University)
  • 이상환 (성균관대학교 화학공학과) ;
  • 이상율 (성균관대학교 화학공학과) ;
  • 남재도 (성균관대학교 고분자공학과) ;
  • 이영관 (성균관대학교 화학공학과)
  • Published : 2006.01.01

Abstract

Plasticized cellulose diacetate(CDA) was prepared by homogenizing cellulose diacetate(CDA), triacetin(TA) and epoxidized soybean oil (ESO) in a high-speed mixer, then the CDA mixture was mixed with ramie fiber to produce a green composite material. In DMA analysis, the glass transition temperature of plasticized CDA and the composite was observed at $85\;^{\circ}C\;and\;140\;^{\circ}C$, respectively. A composite reinforced with alkali treated ramie fiber exhibited significantly higher mechanical properties, such as $15\;^{\circ}C$ increase in tensile strength as well as $41\;^{\circ}C$ increase in Young's modulus when compared with commercial polypropylene. In the SEM image analysis, much enhanced adhesion between plasticized CDA and alkali treated ramie fiber (AIRa) was observed.

셀룰로오스 디아세테이트(CDA)에 가소제로서 트리아세틴(TA)과 에폭시화된 콩기름(ESO)을 첨가하여 고속믹서에서 일차적으로 CDA를 가소화한 후, 여기에 화학적으로 처리한 라미섬유를 각각 첨가하여 천연섬유 복합체를 제조하였다. DMA측정에서 $tan\;\delta$ 피크로부터 유리전이 온도를 확인한 결과, 가소화된 CDA혼합체는 $85\;^{\circ}C$를 나타내고 여기에 라미섬유를 첨가하여 복합화한 필름의 경우는 $55\;^{\circ}C$ 증가한 $140\;^{\circ}C$$T_g$를 보였다. 기계적 강도 측정에서는 알칼리 처리된 라미섬유 필름이 상용화된 폴리프로필렌에 비교하여 인장강도와 탄성률이 각각 $15\%$$41\%$향상된 높은 수치로 우수한 물성이 관찰되었다 또한 복합 필름의 SEM 이미지로부터 알칼리 처리한 라미섬유(A1Ra)는 가소화된 CDA간의 계면접착성이 향상되었음을 확인할 수 있었다.

Keywords

References

  1. C. R. Young, J. J. Koleng, and J. W. McGinity, Inter. J. Pharma., 242, 87 (2002) https://doi.org/10.1016/S0378-5173(02)00152-7
  2. J. Liu, F. Zhang, and J. W. McGinity, Euro. J. Pharma. Biopharma., 52, 181 (2001) https://doi.org/10.1016/S0939-6411(01)00162-X
  3. O. L. Sprockel, M. Sen, P. Shivanand, and W. Prapaitrakul, Inter. J. Pharma., 155, 191 (1997) https://doi.org/10.1016/S0378-5173(97)00165-8
  4. R. D. Gilbert, R. A. Venditti, C. Zhang, and K. W. Koelling, J. Appl. Polym. Sci., 77, 418(2000) https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<418::AID-APP19>3.0.CO;2-I
  5. W. Qiu, F. Zhang, T. Endo, and T. Hirotsu, J. Appl. Polym. sci., 87, 337 (2003) https://doi.org/10.1002/app.11446
  6. W. Mormann and D. Spitzer, Macromol. Symp., 176, 279 (2001)
  7. T. Schauber, S. D. Vos, W. Huhn, B. Rieger, and M. Moller, Macromol. Chem. Phys., 200, 574 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<574::AID-MACP574>3.0.CO;2-T
  8. F. Zhang, W. Qiu, L. Yang, T. Endo, and T. Hirotsu, J. Mater. Chem., 12, 24 (2002) https://doi.org/10.1039/b108255h
  9. L. Y. Mwaikambo and M. P. Ansell, Angew. Makromol. Chem., 272, 108 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  10. X. Lu, M. Q. Zhang, M. Z. Rong, G. Shi, G. C. Yang, and H. M. Zeng, Adv. Compos. Lett., 8, 231 (1999)
  11. D. N. S. Hon and M. S. L. Josefina, J. Polym. Sci.; Part A: Polym. Chem., 27, 4143 (1989) https://doi.org/10.1002/pola.1989.080271221
  12. D. N. S. Hon and N. J. Ou, J. Polym. Sci.; Part A: Polym. Chem., 27, 2457 (1989) https://doi.org/10.1002/pola.1989.080270725
  13. Y. Kiso, T Kitao, and K. Nishimura, J. Appl. Polym. Sci., 71, 1657 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1657::AID-APP13>3.0.CO;2-W
  14. J. Pauly, H. Allaart, M. Rodriguez, and R. Streck, Cancer Res., 55, 253 (1995)
  15. M. A. Frohoff-Hulsmann, N. C. Lippold, and K. W. McGinity, Euro. J. Pharma. Biopharma., 48, 67 (1999) https://doi.org/10.1016/S0939-6411(99)00023-5
  16. S. R. Bechard, L. Levy, and S. D. Clas, Inter. J. Pharma., 114, 205 (1995) https://doi.org/10.1016/0378-5173(94)00239-2
  17. R. Hyppola, I. Husson, and F. Sundholm, Inter. J. Pharma., 133, 161 (1996) https://doi.org/10.1016/0378-5173(96)04436-5
  18. A. K. Mohanty, A. Wibowa, M. Misra, and L. T. Drzal, Polym. Eng. Sci., 43, 1151 (2003) https://doi.org/10.1002/pen.10097
  19. M. S. Cho, S. H. Choi, J. D. Nam, and Y. Lee, Polyrner(Korea), 28, 1 (2004)
  20. S. H. Choi, M. S. Cho, D. Kim, J. H. Kim, D. H. Lee, S. J. Shim, J. D. Nam, and Y. Lee, Polymer(Korea), 29, 399 (2005)
  21. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interf., 8, 313 (2001) https://doi.org/10.1163/156855401753255422
  22. S. Mishra, A. K. Mohanty, L. T Drzal, M. Misra, S. Parija, S. K. Nayak and S. S. Tripathy, Compos. Sci. Technol., 63, 1377 (2003) https://doi.org/10.1016/S0266-3538(03)00084-8
  23. P. W. Law, A. Longdon, and G. G. Willins, Marcromol. Symp., 208, 293 (2004)
  24. L. A. Pothan, Z. Oommen, and S. Thomas, Compos. Sci. Technol., 63, 223 (2003)
  25. J. Gassan and A. K. Bledzki, Compos. Sci. Technol., 59, 1301 (1999)
  26. A. K. Mohanty, M. A. Khan, S. Sahoo, and G. Hinrichsen, J. Mater. Stab., 35, 2589 (2000) https://doi.org/10.1023/A:1004723330799
  27. C. Albano, J. Gonzalez, M. Ichazo, and D Kaiser, Polym. Degrad Stsb., 66, 179 (1999) https://doi.org/10.1016/S0141-3910(99)00064-6
  28. N. E. Marcovich, M. M. Reboredo, and M. I. Aranguren, Thermochimica Acta., 372, 45 (2001) https://doi.org/10.1016/S0040-6031(01)00425-7